Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic system differential equations

Nonlinearity of a system is reflected in the right-hand sides of the differential equations forming the model corresponding to a reaction kinetics. These differential equations are the rate equations representing the mathematical model of a given chemical scheme. These equations not only incorporate the rate constants (k s) but also how each of the reacting elements enters into one or more reactions. Depending on the form of these interactions between the elements, the nonlinearity of the system can be determined. In turn, this nonlinearity leads to particular types of solutions with different oscillatory as well as nonoscillatory characteristics. [Pg.60]

The corresponding kinetic-diffusion differential equation system to be solved is non-linear ... [Pg.132]

Numerical integration (sometimes referred to as solving or simulation) of differential equations, ordinary or partial, involves using a computer to obtain an approximate and discrete (in time and/or space) solution. In chemical kinetics, these differential equations are typically the rate laws that describe the time evolution of the system. One obtains results for the mean concentrations, without any information about the (typically very small) fluctuations that are inevitably present. Continuation and sensitivity analysis techniques enable one to extrapolate from a numerically obtained solution at one set of parameters (e.g., rate constants or initial concentrations) to the behavior of the system at other parameter values, without having to carry out a full numerical integration each time the parameters are changed. Other approaches, sometimes referred to collectively as stochastic methods (Gardiner, 1990), can provide data about fluctuations, but these require considerably more computational labor and are often impractical for models that include more than a few variables. [Pg.140]

At first we tried to explain the phenomenon on the base of the existence of the difference between the saturated vapor pressures above two menisci in dead-end capillary [12]. It results in the evaporation of a liquid from the meniscus of smaller curvature ( classical capillary imbibition) and the condensation of its vapor upon the meniscus of larger curvature originally existed due to capillary condensation. We worked out the mathematical description of both gas-vapor diffusion and evaporation-condensation processes in cone s channel. Solving the system of differential equations for evaporation-condensation processes, we ve derived the formula for the dependence of top s (or inner) liquid column growth on time. But the calculated curves for the kinetics of inner column s length are 1-2 orders of magnitude smaller than the experimental ones [12]. [Pg.616]

The system of coupled differential equations that result from a compound reaction mechanism consists of several different (reversible) elementary steps. The kinetics are described by a system of coupled differential equations rather than a single rate law. This system can sometimes be decoupled by assuming that the concentrations of the intennediate species are small and quasi-stationary. The Lindemann mechanism of thermal unimolecular reactions [18,19] affords an instructive example for the application of such approximations. This mechanism is based on the idea that a molecule A has to pick up sufficient energy... [Pg.786]

General first-order kinetics also play an important role for the so-called local eigenvalue analysis of more complicated reaction mechanisms, which are usually described by nonlinear systems of differential equations. Linearization leads to effective general first-order kinetics whose analysis reveals infomiation on the time scales of chemical reactions, species in steady states (quasi-stationarity), or partial equilibria (quasi-equilibrium) [M, and ]. [Pg.791]

The fimdamental kinetic master equations for collisional energy redistribution follow the rules of the kinetic equations for all elementary reactions. Indeed an energy transfer process by inelastic collision, equation (A3.13.5). can be considered as a somewhat special reaction . The kinetic differential equations for these processes have been discussed in the general context of chapter A3.4 on gas kmetics. We discuss here some special aspects related to collisional energy transfer in reactive systems. The general master equation for relaxation and reaction is of the type [H, 12 and 13, 15, 25, 40, 4T ] ... [Pg.1050]

The mathematical model most widely used for steady-state behavior of a reactor is diffusion theory, a simplification of transport theory which in turn is an adaptation of Boltzmann s kinetic theory of gases. By solving a differential equation, the flux distribution in space and time is found or the conditions on materials and geometry that give a steady-state system are determined. [Pg.211]

A numerical study of the MMEP kinetics, as described by the system of nonlinear differential equations (26), subject to mass conservation (Eq. (27)), has been carried out [64] for a total number of 1000 monomers and different initial MWDs. As expected, and in contrast to the case of wormlike micelles, it has been found that during relaxation to a new equilibrium state the temporal MWD does not preserve its exponential form. [Pg.541]

The kinetics of a coupled reacting system consisting of n stoichiometrically simple reactions is described generally by a set of n differential equations... [Pg.3]

Sometimes the time variable is eliminated from the set of differential equations describing the kinetics of the coupled system, e.g. by dividing... [Pg.4]

The change of n, with time was calculated according to first-order kinetics. It is given by a system of r linear differential equations and 0 r(r - 1) variables ... [Pg.138]

The error in Runge-Kutta calculations depends on h, the step size. In systems of differential equations that are said to be stiff, the value of h must be quite small to attain acceptable accuracy. This slows the calculation intolerably. Stiffness in a set of differential equations arises in general when the time constants vary widely in magnitude for different steps. The complications of stiffness for problems in chemical kinetics were first recognized by Curtiss and Hirschfelder.27... [Pg.115]

Since the integral is over time t, the resulting transform no longer depends on t, but instead is a function of the variable s which is introduced in the operand. Hence, the Laplace transform maps the function X(f) from the time domain into the s-domain. For this reason we will use the symbol when referring to Lap X t). To some extent, the variable s can be compared with the one which appears in the Fourier transform of periodic functions of time t (Section 40.3). While the Fourier domain can be associated with frequency, there is no obvious physical analogy for the Laplace domain. The Laplace transform plays an important role in the study of linear systems that often arise in mechanical, electrical and chemical kinetic systems. In particular, their interest lies in the transformation of linear differential equations with respect to time t into equations that only involve simple functions of s, such as polynomials, rational functions, etc. The latter are solved easily and the results can be transformed back to the original time domain. [Pg.478]

Crosslinking of many polymers occurs through a complex combination of consecutive and parallel reactions. For those cases in which the chemistry is well understood it is possible to define the general reaction scheme and thus derive the appropriate differential equations describing the cure kinetics. Analytical solutions have been found for some of these systems of differential equations permitting accurate experimental determination of the individual rate constants. [Pg.241]

The classic example of reactions of this type is a sequence of radioactive decay processes that result in nuclear transformations. The differential equations that govern kinetic systems of this type are most readily solved by working in terms of concentration derivatives. For the first reaction,... [Pg.150]

Kunii and Levenspiel(1991, pp. 294-298) extend the bubbling-bed model to networks of first-order reactions and generate rather complex algebraic relations for the net reaction rates along various pathways. As an alternative, we focus on the development of the basic design equations, which can also be adapted for nonlinear kinetics, and numerical solution of the resulting system of algebraic and ordinary differential equations (with the E-Z Solve software). This is illustrated in Example 23-4 below. [Pg.590]

The nonlinearity of the system of partial differential equations (51) and (52) poses a serious obstacle to finding an analytical solution. A reported analytical solution for the nonlinear problem of diffusion coupled with complexation kinetics was erroneous [12]. Thus, techniques such as the finite element method [53-55] or appropriate change of variables (applicable in some cases of planar diffusion) [56] should be used to find the numerical solution. One particular case of the nonlinear problem where an analytical solution can be given is the steady-state for fully labile complexes (see Section 3.3). However, there is a reasonable assumption for many relevant cases (e.g. for trace elements such as... [Pg.179]

Nonetheless, the construction of explicit kinetic models allows a detailed and quantitative interrogation of the alleged properties of a metabolic network, making their construction an indispensable tool of Systems Biology. The translation of metabolic networks into ordinary differential equations, including the experimental accessibility of kinetic parameters, is one of the main aspects of this contribution and is described in Section III. [Pg.113]

Kinetic methods describing the evolution of distributions of molecules by systems of kinetic differential equations (obeying either the classic mass action law of chemical kinetics or the generalized Smoluchowski coagulation process). [Pg.128]


See other pages where Kinetic system differential equations is mentioned: [Pg.124]    [Pg.1316]    [Pg.159]    [Pg.248]    [Pg.741]    [Pg.784]    [Pg.789]    [Pg.88]    [Pg.8]    [Pg.178]    [Pg.44]    [Pg.65]    [Pg.10]    [Pg.142]    [Pg.232]    [Pg.266]    [Pg.448]    [Pg.110]    [Pg.241]    [Pg.139]    [Pg.123]    [Pg.204]    [Pg.102]    [Pg.165]    [Pg.674]    [Pg.327]    [Pg.327]    [Pg.115]    [Pg.119]   
See also in sourсe #XX -- [ Pg.280 ]




SEARCH



Differential system

Equations systems

Kinetic differentiation

Kinetic equations

Kinetic system

Kinetics equations

Kinetics systems

© 2024 chempedia.info