Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic studies substrate concentration

Liquid chromatography columns were equilibrated with buffer system "A" (3) containing 1% Brlj W-1, however, If emphasis was given on separation of HMGL activity, EDTA was ommltted. In kinetic studies substrate concentrations were varied as was appropriate. Data were plotted as described (3). [Pg.280]

Kinetic studies involving enzymes can principally be classified into steady and transient state kinetics. In tlie former, tlie enzyme concentration is much lower tlian that of tlie substrate in tlie latter much higher enzyme concentration is used to allow detection of reaction intennediates. In steady state kinetics, the high efficiency of enzymes as a catalyst implies that very low concentrations are adequate to enable reactions to proceed at measurable rates (i.e., reaction times of a few seconds or more). Typical enzyme concentrations are in the range of 10 M to 10 ], while substrate concentrations usually exceed lO M. Consequently, tlie concentrations of enzyme-substrate intermediates are low witli respect to tlie total substrate (reactant) concentrations, even when tlie enzyme is fully saturated. The reaction is considered to be in a steady state after a very short induction period, which greatly simplifies the rate laws. [Pg.833]

Substrate and product inhibitions analyses involved considerations of competitive, uncompetitive, non-competitive and mixed inhibition models. The kinetic studies of the enantiomeric hydrolysis reaction in the membrane reactor included inhibition effects by substrate (ibuprofen ester) and product (2-ethoxyethanol) while varying substrate concentration (5-50 mmol-I ). The initial reaction rate obtained from experimental data was used in the primary (Hanes-Woolf plot) and secondary plots (1/Vmax versus inhibitor concentration), which gave estimates of substrate inhibition (K[s) and product inhibition constants (A jp). The inhibitor constant (K[s or K[v) is a measure of enzyme-inhibitor affinity. It is the dissociation constant of the enzyme-inhibitor complex. [Pg.131]

Table 8.1 presents the results of the ICR retention time studies, sugar concentration (dual substrate) studies and cell density. The kinetic model for ICR was derived on the basis of a first order reaction, plug flow and steady-state behaviour. [Pg.203]

Kinetic studies also provide other evidence for the SnI mechanism. One technique used F NMR to follow the solvolysis of trifluoroacetyl esters. If this mechanism operates essentially as shown on page 393, the rate should be the same for a given substrate under a given set of conditions, regardless of the identity of the nucleophile or its concentration. In one experiment that demonstrates this, benzhy-dryl chloride (Ph2CHCl) was treated in SO2 with the nucleophiles fluoride ion, pyridine, and triethylamine at several concentrations of each nucleophile. In each case, the initial rate of the reaction was approximately the same when corrections were made for the salt effect. The same type of behavior has been shown in a number of other cases, even when the reagents are as different in their nucleophilicities (see p. 438) as H2O and OH . [Pg.396]

Hydration of compounds 2, 3, 4, 5 was found to be first order both in substrate and in hydronium ion (4-10). Furthermore, a careful kinetic study of compounds 2c-g and the sulfur analog 4 revealed that the hydration rate at constant ionic strength was dependent on the buffer concentration and hence was general acid catalyzed. [Pg.207]

Inhibitors of the catalytic activities of enzymes provide both pharmacologic agents and research tools for study of the mechanism of enzyme action. Inhibitors can be classified based upon their site of action on the enzyme, on whether or not they chemically modify the enzyme, or on the kinetic parameters they influence. KineticaUy, we distinguish two classes of inhibitors based upon whether raising the substrate concentration does or does not overcome the inhibition. [Pg.67]

A kinetic study of the hydrodefluorination of C F H in the presence of EtjSiH indicated a first-order dependence on both [fluoroarene] and [ruthenium precursor] and a zero-order dependence on the concentration of alkylsilane, implying that the rate-limiting step in the catalytic cycle involves activation of the fluoroarene. The regioselectivity for hydrodefluorination of partially fluorinated substrates such as CgFjH has been accounted for by an initial C-H bond activation as shown in the... [Pg.214]

The relationship between CL intensity and time is expressed by a kinetic equation including the reaction rate constants and the substrate concentration. Such is the case with the specific equation for the CL of the luminol reaction, which is one of the most widely studied in this context ... [Pg.178]

The reduction of 7,8-dihydrofolate (H2F) to 5,6,7,8-tetrahydrofolate (H4F) has been analyzed extensively14 26-30 and a kinetic scheme for E. Coli DHFR was proposed in which the steady-state kinetic parameters as well as the full time course kinetics under a variety of substrate concentrations and pHs were determined. From these studies, the pKa of Asp27 is 6.5 in the ternary complex between the enzyme, the cofactor NADPH and the substrate dihydrofolate. The second observation is that, contrary to earlier results,27 the rate determining step involves dissociation of the product from the enzyme, rather than hydride ion transfer from the cofactor to the substrate. [Pg.254]

In the absence of S2, the true Michaelis constant, Kml, is obtained. Consequently, the values of f and Vmax determined in a kinetics study depend upon the composition (csl and cS2) and total substrate concentration within the system. [Pg.272]

The autoxidation of 3,5-di-terf-butylcatechol (H2DTBC) was frequently used to test the catalytic activity of various metal complexes. Speier studied the reaction with [Cu(PY)Cl] (PY = pyridine) in CH2C12 and CHCI3, and reported second-, first- and zeroth-order dependence with respect to Cu(I), 02 and substrate concentrations, respectively (41). The results are consistent with a kinetic model in which the rate determining oxidation of Cu(I) is followed by fast reduction of Cu(II) by H2DTBC. [Pg.415]

Experimental studies on the effect of substrate concentration on the activity of an enzyme show consistent results. At low concentrations of substrate the rate of reaction increases as the concentration increases. At higher concentrations the rate begins to level out and eventually becomes almost constant, regardless of any further increase in substrate concentration. The choice of substrate concentration is an important consideration in the design of enzyme assays and an understanding of the kinetics of enzyme-catalysed reactions is needed in order to develop valid methods. [Pg.260]

Further experiments by Brown and particularly Henri were made with invertase. At that time the pH of the reactions was not controlled, mutarotation did not proceed to completion, and it is no longer possible to identify how much enzyme was used (Segal, 1959). Nevertheless, in a critical review of kinetic studies with invertase, Henri concluded (1903) that the rate of reaction was proportional to the amount of enzyme. He also stated that the equilibrium of the enzyme-catalyzed reaction was unaffected by the presence of the catalyst, whose concentration remained unchanged even after 10 hours of activity. When the concentration of the substrate [S] was sufficiently high the velocity became independent of [S]. Henri derived an equation relating the observed initial velocity of the reaction, Vq, to the initial concentration of the substrate, [S0], the equilibrium constant for the formation of an enzyme-substrate complex, Ks, and the rate of formation of the products, ky... [Pg.182]


See other pages where Kinetic studies substrate concentration is mentioned: [Pg.212]    [Pg.212]    [Pg.218]    [Pg.212]    [Pg.212]    [Pg.218]    [Pg.201]    [Pg.204]    [Pg.207]    [Pg.210]    [Pg.28]    [Pg.488]    [Pg.488]    [Pg.211]    [Pg.516]    [Pg.561]    [Pg.565]    [Pg.166]    [Pg.473]    [Pg.383]    [Pg.224]    [Pg.219]    [Pg.40]    [Pg.452]    [Pg.160]    [Pg.460]    [Pg.213]    [Pg.76]    [Pg.251]    [Pg.183]    [Pg.429]    [Pg.108]    [Pg.380]    [Pg.476]    [Pg.1508]    [Pg.446]    [Pg.49]   
See also in sourсe #XX -- [ Pg.576 ]




SEARCH



Concentration kinetics

Kinetic studies

Kinetics, studies

Substrate concentration

Substrate studies

© 2024 chempedia.info