Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic description, surface

In kinetic analysis of coupled catalytic reactions it is necessary to consider some specific features of their kinetic behavior. These specific features of the kinetics of coupled catalytic reactions will be discussed here from a phenomenological point of view, i.e. we will show which phenomena occur or may occur, and what formal kinetic description they have if the coupling of reactions is taking place. No attention will be paid to details of mechanisms of the processes occurring on the catalyst surface from a molecular point of view. [Pg.9]

A kinetic description of a heterogeneous catalytic reaction will in most cases be different when the reaction proceeds simultaneously with other reactions in a complex system, compared with the case where its kinetics was studied separately. The most important is the effect in the case where the reactions concerned take place on the same sites of the surface of a catalyst. Let us take, for example, the system of competitive reactions... [Pg.9]

The mechanism of the NO -1- CO reaction at realistic pressures is thus very complicated. In addition to the reaction steps considered above, one also has to take into account that intermediates on the surface may organize into islands or periodically ordered structures. Monte Carlo techniques are needed to account for these effects. Consequently, we are still far from a complete kinetic description of the CO -1- NO reaction. For an interesting review of the mechanism and kinetics of this reaction we refer to Zhdanov and Kasemo [V.P. Zhdanov and B. Kasemo, Suif. Sci. Rep. 29 (1997) 31],... [Pg.390]

Surface composition. The principle of surface segregation in ideal systems is easy to understand and to derive thermodynamically the equilibrium relations (surface concentration Xg as a function of the bulk concentration Xb at various temperatures) is also very easy (4,8). Even easier is a kinetic description which can also comprise some of the effects of the non-ideality (9). We consider an equilibrium between the surface(s) and the bulk(b) in the exchange like ... [Pg.268]

The theory of ion-selective electrode response is well developed, due to the works of Eisenman, Buck and others [23], Three models used for the description of the ISE response through the years, namely kinetic, membrane surface (or space charge) and phase boundary potential (PBP) models, although being seemingly contradictory, give similar results in most cases [7], The first two sophisticated models are out of the scope of the present chapter, as the PBP model, despite its simplicity, satisfactorily explains most of the experimental results and thus has become widely applicable. The... [Pg.101]

These assumptions are partially different from those introduced in our previous model.10 In that work, in fact, in order to simplify the kinetic description, we assumed that all the steps involved in the formation of both the chain growth monomer CH2 and water (i.e., Equations 16.3 and 16.4a to 16.4e) were a series of irreversible and consecutive steps. Under this assumption, it was possible to describe the rate of the overall CO conversion process by means of a single rate equation. Nevertheless, from a physical point of view, this hypothesis implies that the surface concentration of the molecular adsorbed CO is nil, with the rate of formation of this species equal to the rate of consumption. However, recent in situ Fourier transform infrared (FT-IR) studies carried out on the same catalyst adopted in this work, at the typical reaction temperature and in an atmosphere composed by H2 and CO, revealed the presence of a significant amount of molecular CO adsorbed on the catalysts surface.17 For these reasons, in the present work, the hypothesis of the irreversible molecular CO adsorption has been removed. [Pg.308]

Nevertheless, the kinetic approach to heterogeneous catalysis can be rewarding if relative data for two or more structurally related reactants or catalysts are acquired and interpreted. Instead of applying several assumptions that simplify the reaction scheme and the model of the surface, which are necessary for absolute kinetic description, it is accepted that, under certain conditions, the same reaction scheme holds for all members of the series of reactants or catalysts and that all of the unknown but identical simplifications in the relative data cancel out. However, it is much safer to select a series of reactants in which the structural change from one member to another will be small enough to uphold the basic features of the mechanism than to assume the same for a set of catalysts that are not minor variations of a basic preparation. [Pg.152]

Klupinski et al. (2004) conclude that the reduction of nitroaromatic compounds is a surface-mediated process and suggest that, with lack of an iron mineral, reductive transformation induced only by Fe(II) does not occur. However, when C Cl NO degradation was investigated in reaction media containing Fe(II) with no mineral phase added, a slow reductive transformation of the contaminant was observed. Because the loss of C Cl NO in this case was not described by a first-order kinetic model, as in the case of high concentration of Fe(II), but better by a zero-order kinetic description, Klupinski et al. (2004) suggest that degradation in these systems in fact is a surface-mediated reaction. They note that, in the reaction system, trace amounts of oxidize Fe(II), which form in situ suspended iron oxide... [Pg.328]

We continue our study of chemical kinetics with a presentation of reaction mechanisms. As time permits, we complete this section of the course with a presentation of one or more of the topics Lindemann theory, free radical chain mechanism, enzyme kinetics, or surface chemistry. The study of chemical kinetics is unlike both thermodynamics and quantum mechanics in that the overarching goal is not to produce a formal mathematical structure. Instead, techniques are developed to help design, analyze, and interpret experiments and then to connect experimental results to the proposed mechanism. We devote the balance of the semester to a traditional treatment of classical thermodynamics. In Appendix 2 the reader will find a general outline of the course in place of further detailed descriptions. [Pg.286]

Somorjai, G. A., Introduction to Surf ace Chemistry and Catalysis, Wiley, New York, 1994. (Undergraduate level. This in-depth treatment of surface chemistry and catalysis brings the experience and perspectives of a pioneer in the field to the general audience. The book is meant to be an introductory-level description of modern developments in the area for students at the junior level. However, it is also an excellent source of the current literature and contains numerous, extensive tables of data on kinetic parameters, surface structure of catalysts, and so on. Chapter 3, Thermodynamics of Surfaces, and Chapter 7, Catalysis by Surfaces, cover information relevant to the present chapter. Chapter 8 discusses applications in tribology and lubrication (not discussed in this chapter).)... [Pg.456]

Deviations from this simple expression have been attributed to mechanistic complexity For example, detailed kinetic studies have evaluated the relative importance of the Langmuir-Hinshelwood mechanism in which the reaction is proposed to occur entirely on the surface with adsorbed species and the Eley-Rideal route in which the reaction proceeds via collision of a dissolved reactant with surface-bound intermediates 5 . Such kinetic descriptions allow for the delineation of the nature of the adsorption sites. For example, trichloroethylene is thought to adsorb at Ti sites by a pi interaction, whereas dichloroacetaldehyde, an intermediate proposed in the photo-catalyzed decomposition of trichloroethylene, has been suggested to be dissociatively chemisorbed by attachment of the alpha-hydrogen to a surface site... [Pg.80]

The basic premise of the original kinetic description of inhibition was that, for a reaction to proceed on a surface, one or more of the reactants (A) must be adsorbed on that surface in reversible equilibrium with the external solution, having an equilibrium adsorption constant of KA, and the adsorbed species must undergo some transformation involving one or more adsorbed intermediates (n) in the rate-limiting step, which leads to product formation. The product must desorb for the reaction cycle to be complete. If other species in the reaction mixture (I) can compete for the same adsorption site, the concentration of the adsorbed reactant (Aad) on the surface will be lower than when only pure reactant A is present. Thus, the rate of conversion will depend on the fraction of the adsorption sites covered by the reactant (0A) rather than the actual concentration of the reactant in solution, and the observed rate coefficient (fcobs) will be different from the true rate coefficient (ktme). In its simplest form the kinetic expression for this phenomenon in a first-order reaction can be described as follows ... [Pg.442]

The complex nature of heterogeneous catalytic reactions, which consist of a sequence of at least three steps (adsorption, surface reaction and desorption), the possible intervention of transport processes and the uncertainty about the actual state of the surface makes every attempt to obtain a complete formal kinetic description without simplifying assumptions futile. In this situation, some authors prefer fully empirical equations of the type... [Pg.272]

For a formal kinetic description of vapour phase esterifications on inorganic catalysts (Table 21), Langmuir—Hinshelwood-type rate equations were applied in the majority of cases [405—408,410—412,414,415]. In some work, purely empirical equations [413] or second-order power law-type equations [401,409] were used. In the latter cases, the authors found that transport phenomena were important either pore diffusion [401] or diffusion of reactants through the gaseous film, as well as through the condensed liquid on the surface [409], were rate-controlling. [Pg.351]

The compensation relationships mentioned here for the decomposition of formic acid on metals (Table III, K-R and Figs. 6 and 7) cannot be regarded as established, meaningful kinetic descriptions of the reactions concerned, since the magnitudes of the calculated values of B and e depend on the selection of data to be included in the calculation. While there is evidence of several sympathetic interrelationships between log A and E, the data currently available do not accurately locate a specific line and do not define values of B and e characteristic of each system, or for all such systems taken as a group. The pattern of observations is, however, qualitatively attributable to the existence of a common temperature range within which the adsorbed formate ion becomes unstable. The formation of this active intermediate, metal salt, or surface formate, provides a mechanistic explanation of the observed kinetic behavior, since the temperature dependence of concentration of such a participant may vary with the prevailing reaction conditions. [Pg.293]

Non-uniformity of catalytic sites A characteristic of a catalytic surface is that its sites may differ in their thermodynamic and kinetic properties. In the kinetic description of catalytic reactions on non-uniform surfaces, a parameter a is frequently used to connect changes in the activation energy of activated adsorption with the enthalpy of the adsorption... [Pg.376]

In order to assess the feasibility of any nuclear waste disposal concept, mathematical models of radionuclide sorption processes are required. In a later section kinetic descriptions of the three common sorption isotherms (3) are compared with experimental data from the mixing-cell tests. For a radionuclide of concentration C in the groundwater and concentration S on the surface of the granite, the net rate of sorption, by a first-order reversible reaction, is given by... [Pg.50]

The results show that the specificities of catalyst deactivation and it s kinetic description are in closed connection with reaction kinetics of main process and they form a common kinetic model. The kinetic nature of promotor action in platinum catalysts side by side with other physicochemical research follows from this studies as well. It is concern the increase of slow step rate, the decrease of side processes (including coke formation) rate and the acceleration of coke transformation into methane owing to the increase of hydrogen contents in coke. The obtained data can be united by common kinetic model.lt is desirable to solve some problems in describing the catalyst deactivation such as the consideration of coke distribution between surfaces of metal, promoter and the carrier in the course of reactions, diffusion effects etc,. [Pg.548]

The three seminal ideas in this early work of Temkin are quite general. The first is that adsorption of nitrogen is rate determining. The second is the virtual pressure or fugacity of adsorbed nitrogen, a concept of great importance to the understanding of catalytic cycles at the steady state. The third idea is the kinetic description of the catalytic surface as a nonuniform one. The last was systematized later by Temkin s school, both in theory and in application, to a... [Pg.441]

The next section gives a brief overview of the main computational techniques currently applied to catalytic problems. These techniques include ab initio electronic structure calculations, (ab initio) molecular dynamics, and Monte Carlo methods. The next three sections are devoted to particular applications of these techniques to catalytic and electrocatalytic issues. We focus on the interaction of CO and hydrogen with metal and alloy surfaces, both from quantum-chemical and statistical-mechanical points of view, as these processes play an important role in fuel-cell catalysis. We also demonstrate the role of the solvent in electrocatalytic bondbreaking reactions, using molecular dynamics simulations as well as extensive electronic structure and ab initio molecular dynamics calculations. Monte Carlo simulations illustrate the importance of lateral interactions, mixing, and surface diffusion in obtaining a correct kinetic description of catalytic processes. Finally, we summarize the main conclusions and give an outlook of the role of computational chemistry in catalysis and electrocatalysis. [Pg.28]

A kinetic description of these reactions is difficult to give, due to the complicated decomposition pathways of the hydrocarbons on noble metal surfaces. The temperature programmed reaction between adsorbed ethylene and NO on rhodium in Fig. 5.16 illustrates some of the many reactions that may occur [58]. As seen before, the NO molecule starts to dissociate aroimd room temperature. Ethylene decomposes in several steps at different temperatures as evidenced by the release of H2 and H2O. The formation of CO and some CO2 between 500 and 600 K is well above the respective desorption temperatures of these gases, and suggests that the C-C bond of the hydrocarbon breaks in this temperature range and limits the rate of the oxidation on rhodium surfaces. Formation of HCN is observed as well. Note that a large reservoir of surface CN species forms at temperatures of 500 K and remains on the surface until 700-800 K, where it decomposes and is followed by the instantaneous desorption of N2. [Pg.233]


See other pages where Kinetic description, surface is mentioned: [Pg.368]    [Pg.49]    [Pg.401]    [Pg.53]    [Pg.391]    [Pg.415]    [Pg.34]    [Pg.103]    [Pg.209]    [Pg.152]    [Pg.56]    [Pg.62]    [Pg.368]    [Pg.154]    [Pg.426]    [Pg.837]    [Pg.273]    [Pg.283]    [Pg.257]    [Pg.418]    [Pg.194]    [Pg.211]    [Pg.307]    [Pg.63]    [Pg.68]    [Pg.367]    [Pg.275]    [Pg.292]   


SEARCH



Kinetic description, surface composition

Kinetics description

Kinetics surfaces

Surface description

Surface reaction kinetics description

© 2024 chempedia.info