Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kidney drug reabsorption

Figure 5,4 Pharmacokinetics. The absorption distribution and fate of drugs in the body. Routes of administration are shown on the left, excretion in the urine and faeces on the right. Drugs taken orally are absorbed from the stomach and intestine and must first pass through the portal circulation and liver where they may be metabolised. In the plasma much drug is bound to protein and only that which is free can pass through the capillaries and into tissue and organs. To cross the blood brain barrier, however, drugs have to be in an unionised lipid-soluble (lipophilic) form. This is also essential for the absorption of drugs from the intestine and their reabsorption in the kidney tubule. See text for further details... Figure 5,4 Pharmacokinetics. The absorption distribution and fate of drugs in the body. Routes of administration are shown on the left, excretion in the urine and faeces on the right. Drugs taken orally are absorbed from the stomach and intestine and must first pass through the portal circulation and liver where they may be metabolised. In the plasma much drug is bound to protein and only that which is free can pass through the capillaries and into tissue and organs. To cross the blood brain barrier, however, drugs have to be in an unionised lipid-soluble (lipophilic) form. This is also essential for the absorption of drugs from the intestine and their reabsorption in the kidney tubule. See text for further details...
The kidneys are located on the posterior part of the abdomen on either side of the spine, below the diaphragm, and behind the liver and stomach. They are bean-shaped and weigh approximately 150 grams (0.33 lb) each. The primary function of the kidneys is excretion. They work to excrete waste products through a series of steps involving glomerular filtration, secretion, and reabsorption. The kidneys also have several endocrine (e.g., production of erythropoietin and renin) and metabolic (e.g., vitamin D activation and drug metabolism) functions. [Pg.831]

The COX-2 enzyme is also produced normally in the kidney thus COX-2 inhibitors exert renal effects similar to those of conventional NSAIDs. Both drug classes may increase sodium reabsorption and fluid retention and can provoke renal insufficiency and hyperkalemia. COX-2 inhibitors should be used with caution in patients with heart failure or hypertension. [Pg.887]

Angiotensin-converting enzyme (ACE) inhibitors. ACE inhibitors not only cause vasodilation (1 TPR), but also inhibit the aldosterone response to net sodium loss. Normally, aldosterone, which enhances reabsorption of sodium in the kidney, would oppose diuretic-induced sodium loss. Therefore, coadministration of ACE inhibitors would enhance the efficacy of diuretic drugs. [Pg.211]

The balance of filtration at the glomerulus and reabsorption and secretion in the tubules allows the kidneys to maintain homeostasis of extracellular fluid, nutrients and acid-base balance and to excrete drugs and metabolic waste products. [Pg.176]

There are several efflux pumps which may affect absorption, blood-brain-barrier penetration, and reabsorption from kidney microtubules. The most commonly tested efflux pump in early drug discovery is the P-glycoprotein. Assays to identify P-glycoprotein substrates or inhibitors can be run using a variety of cell lines. [Pg.128]

Acetazolamide is an aromatic sulfonamide used as a carbonic anhydrase inhibitor. It facilitates production of alkahne urine with an elevated biocarbonate, sodium, and potassium ion concentrations. By inhibiting carbonic anhydrase, the drug suppresses reabsorption of sodium ions in exchange for hydrogen ions, increases reflux of bicarbonate and sodium ions and reduces reflux of chloride ions. During this process, chloride ions are kept in the kidneys to cover of insufficiency of bicarbonate ions, and for keeping an ion balance. Electrolytic contents of fluid secreted by the kidneys in patients taking carbonic anhydrase inhibitors are characterized by elevated levels of sodium, potassium, and bicarbonate ions and a moderate increase in water level. Urine becomes basic, and the concentration of bicarbonate in the plasma is reduced. [Pg.279]

Any drug known to be largely excreted by the kidney that has a body half-life of less than 2 hours is probably eliminated, at least in part, by tubular secretion. Some drugs can be secreted and have long half-lives, however, because of extensive passive reabsorption in distal segments of the nephron (see Passive Diffusion, earlier in the chapter). Several pharmacologically active drugs, both anions and cations, known to be secreted are listed in Table 4.5. [Pg.42]

Caffeine is a weak diuretic because it nonspecifically and weakly blocks adenosine receptors that participate in the control of proximal tubule Na+ reabsorption in the kidney. A new class of drugs, the adenosine A1 receptor antagonists, have recently been found to have potent vasomotor effects in the renal microvasculature and to significantly blunt both proximal tubule and collecting duct NaCI reabsorption (see under Heart Failure). One of these drugs, rolofylline (KW-3902), should soon receive final Food and Drug Administration (FDA) approval. [Pg.322]

Certain foreign compounds may cause the retention or excretion of water. Some compounds, such as the drug furosemide, are used therapeutically as diuretics. Other compounds causing diuresis are ethanol, caffeine, and certain mercury compounds such as mersalyl. Diuresis can be the result of a direct effect on the kidney, as with mercury compounds, which inhibit the reabsorption of chloride, whereas other diuretics such as ethanol influence the production of antidiuretic hormone by the pituitary. Changes in electrolyte balance may occur as a result of excessive excretion of an anion or cation. For example, salicylate-induced alkalosis leads to excretion of Na+, and ethylene glycol causes the depletion of calcium, excreted as calcium oxalate. [Pg.236]


See other pages where Kidney drug reabsorption is mentioned: [Pg.295]    [Pg.307]    [Pg.41]    [Pg.181]    [Pg.184]    [Pg.8]    [Pg.343]    [Pg.270]    [Pg.138]    [Pg.138]    [Pg.372]    [Pg.803]    [Pg.362]    [Pg.193]    [Pg.668]    [Pg.275]    [Pg.265]    [Pg.76]    [Pg.76]    [Pg.121]    [Pg.62]    [Pg.68]    [Pg.38]    [Pg.42]    [Pg.179]    [Pg.189]    [Pg.39]    [Pg.214]    [Pg.239]    [Pg.242]    [Pg.244]    [Pg.62]    [Pg.103]    [Pg.358]    [Pg.212]    [Pg.198]    [Pg.263]    [Pg.24]    [Pg.405]    [Pg.961]    [Pg.966]   
See also in sourсe #XX -- [ Pg.48 , Pg.50 ]




SEARCH



Kidneys reabsorption

Reabsorption

Reabsorption, drugs

© 2024 chempedia.info