Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones palladium catalysts

The residue is the hydrochloride of m-hydroxyphenyl-a-aminoethyl ketone. This is purified by recrystallization from absolute alcohol. It is then dissolved in 200 parts of water and agitated with a further quantity of the palladium catalyst in an atmosphere of hydrogen until saturated. The product thus recovered from the solution is the hydrochloride... [Pg.959]

Compound A, C H O, was found to be an optically active alcohol. Despite its apparent unsaturation, no hydrogen was absorbed on catalytic reduction over a palladium catalyst. On treatment of A with dilute sulfuric acid, dehydration occurred and an optically inactive alkene B, Q iH14, was produced as the major product. Alkene B, on ozonolysis, gave two products. One product was identified as propanal, CH3CH2CHO. Compound C, the other product, was shown to be a ketone, CgHgO. How many degrees of unsaturation does A have Write the reactions, and identify A, B, and C. [Pg.329]

Acid derivatives that can be converted to amides include thiol acids (RCOSH), thiol esters (RCOSR), ° acyloxyboranes [RCOB(OR )2]. silicic esters [(RCOO)4Si], 1,1,1-trihalo ketones (RCOCXa), a-keto nitriles, acyl azides, and non-enolizable ketones (see the Haller-Bauer reaction 12-31). A polymer-bound acyl derivative was converted to an amide using tributylvinyl tin, trifluoroacetic acid, AsPh3, and a palladium catalyst. The source of amine in this reaction was the polymer itself, which was an amide resin. [Pg.512]

Alkenylboranes (R2C=CHBZ2 Z — various groups) couple in high yields with vinylic, alkynyl, aryl, benzylic, and allylic halides in the presence of tetra-kis(triphenylphosphine)palladium, Pd(PPh3)4, and a base to give R C CHR. 9-Alkyl-9-BBN compounds (p. 1013) also couple with vinylic and aryl halides " as well as with a-halo ketones, nitriles, and esters.Aryl halides couple with ArB(IR2 ) species with a palladium catalyst. ... [Pg.541]

Other nucleophiles add to conjugated systems to give Michael-type products. Aniline derivatives add to conjugated aldehydes in the presence of a catalytic amount of DBU (p. 488). Amines add to conjugated esters in the presence of InCla, La(OTf)3, or YTb(OTf)3 at 3kbar, for example, to give P-amino esters. This reaction can be initiated photochemically. An intramolecular addition of an amine unit to a conjugated ketone in the presence of a palladium catalyst, or... [Pg.1023]

Similar reactions have been carried out on acetylene. Aldehydes add to alkynes in the presence of a rhodium catalyst to give conjugated ketones. In a cyclic version of the addition of aldehydes, 4-pentenal was converted to cyclopen-tanone with a rhodium-complex catalyst. In the presence of a palladium catalyst, a tosylamide group added to an alkene unit to generate A-tosylpyrrolidine derivatives. ... [Pg.1034]

The reductive amination of ketones can be carried out under hydrogen pressure in the presence of palladium catalysts. However, if enantiopure Q -aminoketones are used, partial racemization of the intermediate a-amino imine can occur, owing to the equilibration with the corresponding enam-ine [102]. Asymmetric hydrogenation of racemic 2-amidocyclohexanones 218 with Raney nickel in ethanol gave a mixture of cis and trans 1,2-diamino cyclohexane derivatives 219 in unequal amounts, presumably because the enamines are intermediates, but with excellent enantioselectivity. The two diastereomers were easily separated and converted to the mono-protected cis- and trans- 1,2-diaminocyclohexanes 220. The receptor 221 has been also synthesized by this route [103] (Scheme 33). [Pg.39]

The NHC-palladium catalyst system can also promote the ring closure of o-bromobenzyl ketones 170 (Scheme 5.45) [50]. Benzo[b]furans 171 were successfully prepared using this methodology. [Pg.154]

Enantioselective allylations of a-nitro ketones and a-nitro esters with allyl acetates are carried out in the presence of 2 equiv of alkali metal fluorides (KF, RbF, CsF) and 1 mol% palladium catalysts prepared in situ from Pd2(dba)3-CHC13 and chiral phosphine ligands. Moderate enantio-selectivity (ca 50% ee) is reported for allylation of cx-nitroketones (Eq. 5.60). The highest selectivity (80% ee) is observed for allylation of the reaction of tert-butyl ester (Eq. 5.61).93... [Pg.145]

Moreover, propargyl oxiranes 202 were found to react with samarium diiodide and ketones to form a,a -dihydroxyallenes 203 with moderate to high anti-diastereo-selectivities (Scheme 2.62). Aurrecoechea and co-workers [99] reported this reductive coupling to proceed smoothly in the absence of a palladium catalyst, i.e. a direct electron transfer from the samarium(II) to the substrate has to take place in order to generate an allenyl/propargyl samarium intermediate of type 184/185, which is then regioselectively trapped by the electrophile. [Pg.85]

The metal-catalysed autoxidation of alkenes to produce ketones (Wacker reaction) is promoted by the presence of quaternary ammonium salts [14]. For example, using copper(II) chloride and palladium(II) chloride in benzene in the presence of cetyltrimethylammonium bromide, 1-decene is converted into 2-decanone (73%), 1,7-octadiene into 2,7-octadione (77%) and vinylcyclohexane into cyclo-hexylethanone (22%). Benzyltriethylammonium chloride and tetra-n-butylammo-nium hydrogen sulphate are ineffective catalysts. It has been suggested that the process is not micellar, although the catalysts have the characteristics of those which produce micelles. The Wacker reaction is also catalysed by rhodium and ruthenium salts in the presence of a quaternary ammonium salt. Generally, however, the yields are lower than those obtained using the palladium catalyst and, frequently, several oxidation products are obtained from each reaction [15]. [Pg.461]

Rhodium(III) complexes [e.g. (i-Pr,P)2Rh(H)Cl2] in the presence of quaternary ammonium salts are excellent catalysts for the hydrogenolysis of chloroarenes under mild conditions [5] other labile substituents are unaffected. Hydrodehalogenation of haloaryl ketones over a palladium catalyst to give acylbenzenes is also aided by the addition of Aliquat [6]. In the absence of the phase-transfer catalyst, or when the hydrogenation is conducted in ethanol, the major product is the corresponding alkyl-benzene, which is also produced by hydrodehalogenation of the halobenzyl alcohols. [Pg.512]


See other pages where Ketones palladium catalysts is mentioned: [Pg.76]    [Pg.27]    [Pg.123]    [Pg.134]    [Pg.60]    [Pg.145]    [Pg.959]    [Pg.1099]    [Pg.558]    [Pg.558]    [Pg.253]    [Pg.287]    [Pg.579]    [Pg.580]    [Pg.592]    [Pg.1035]    [Pg.1336]    [Pg.85]    [Pg.284]    [Pg.184]    [Pg.371]    [Pg.233]    [Pg.120]    [Pg.57]    [Pg.96]    [Pg.463]    [Pg.468]    [Pg.469]    [Pg.117]    [Pg.168]    [Pg.399]    [Pg.188]    [Pg.186]    [Pg.323]    [Pg.157]    [Pg.152]    [Pg.181]   
See also in sourсe #XX -- [ Pg.141 ]

See also in sourсe #XX -- [ Pg.141 ]

See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Ketone catalysts

Palladium catalysts catalyst

Palladium ketones

© 2024 chempedia.info