Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones Knoevenagel reaction

The formation of ethyl isopropylidene cyanoacetate is an example of the Knoevenagel reaction (see Discussion before Section IV,123). With higher ketones a mixture of ammonium acetate and acetic acid is an effective catalyst the water formed is removed by azeotropic distillation with benzene. The essential step in the reaction with aqueous potassium cyanide is the addition of the cyanide ion to the p-end of the ap-double bond ... [Pg.490]

The prototype of a Knoevenagel reaction shown in the scheme above is the condensation of an aldehyde or ketone 1 with a malonic ester 2, to yield an a ,/3-unsaturated carboxylic ester 4. [Pg.176]

The term Knoevenagel reaction however is used also for analogous reactions of aldehydes and ketones with various types of CH-acidic methylene compounds. The reaction belongs to a class of carbonyl reactions, that are related to the aldol reaction. The mechanism is formulated by analogy to the latter. The initial step is the deprotonation of the CH-acidic methylene compound 2. Organic bases like amines can be used for this purpose a catalytic amount of amine usually suffices. A common procedure, that uses pyridine as base as well as solvent, together with a catalytic amount of piperidine, is called the Doebner modification of the Knoevenagel reaction. [Pg.176]

Virtually any aldehyde or ketone and any CH-acidic methylene compound can be employed in the Knoevenagel reaction however the reactivity may be limited due to steric effects. Some reactions may lead to unexpected products from side-reactions or from consecutive reactions of the initially formed Knoevenagel product. [Pg.178]

The Knoevenagel reaction is a carbonyl condensation reaction of an ester with an aldehyde or ketone to yield an a,j8-unsaturated product. Show the mechanism of the Knoevenagel reaction of diethyl malonate with benzaldchyde. [Pg.913]

When the reactant is of the form ZCH2Z, aldehydes react much better than ketones and few successful reactions with ketones have been reported. However, it is possible to get good yields of alkene from the condensation of diethyl malonate, CH2(COOEt)2, with ketones, as well as with aldehydes, if the reaction is run with TiCU and pyridine in THF. In reactions with ZCH2Z, the catalyst is most often a secondary amine (piperidine is the most common), though many other catalysts have been used. When the catalyst is pyridine (to which piperidine may or may not be added) the reaction is known as the Doebner modification of the Knoevenagel reaction. Alkoxides are also common catalysts. [Pg.1226]

When aliphatic nitro compounds are used instead of aldehydes or ketones, no reduction occurs, and the reaction is essentially a Knoevenagel reaction, though it is usually also called a Tollens reaction ... [Pg.1231]

The Knoevenagel reaction between o-hydroxyaryl aldehydes and ketones and substituted acetonitriles affords high yields of 3-substituted coumarins in aqueous alkaline media <96H(43)1257>, whilst 4-hydroxycoumarins have been elaborated to pyrano [3,2-c]benzopyran-5-ones by reaction with aromatic aldehydes and malononitiile <96P148>. The imine (10) resulting from the complex reaction of o-hydroxyacetophenone with malononitrile undergoes a 1,5-tautomeric shift in solution <96JCS(P1)1067>. [Pg.296]

So far, only those domino Knoevenagel/hetero-Diels-Alder reactions have been discussed where the cycloaddition takes place at an intramolecular mode however, the reaction can also be performed as a three-component transformation by applying an intermolecular Diels-Alder reaction. In this process again as the first step a Knoevenagel reaction of an aldehyde or a ketone with a 1,3-dicarbonyl compound occurs. However, the second step is now an intermolecular hetero-Diels-Alder reaction of the formed 1 -oxa-1,3 -butadiene with a dienophile in the reaction mixture. The scope of this type of reaction, and especially the possibility of obtaining highly diversified molecules, is even higher than in the case of the two-component transformation. The stereoselectivity of the cycloaddition step is found to be less pronounced, however. [Pg.168]

The Knoevenagel reaction consists in the condensation of aldehydes or ketones with active methylene compounds usually performed in the presence of a weakly basic amine (Scheme 29) [116], It is well-known that aldehydes are much more reactive than ketones, and active methylene substrates employed are essentially those bearing two electron-withdrawing groups. Among them, 1,3-dicarbonyl derivatives are particularly common substrates, and substances such as malonates, acetoacetates, acyclic and cyclic 1,3-diketones, Meldrum s acid, barbituric acids, quinines, or 4-hydroxycoumarins are frequently involved. If Z and Z groups are different, the Knoevenagel adduct can be obtained as a mixture of isomers, but the reaction is thermodynamically controlled and the major product is usually the more stable one. [Pg.246]

Problem 17.35 In the Knoevenagel reaction, aldehydes or ketones condense with compounds having a reactive CHj between two C=0 groups. The cocatalysts are both a weak base (RCOO ) and a weak acid (R,NH,). Outline the reaction between C<,H,CH==0 and H2C(COOEt)2. d... [Pg.404]

The condensation of aldehydes or ketones, usually not containing an a hydrogen, with compounds of the form Z—CH2—Z or Z—CHR—Z is called the Knoevenagel reaction. 2... [Pg.945]

Knoevenagel reaction of ketones with ethyl cyanoacetate... [Pg.281]

An attractive method to generate C5-monoalkyl-substituted Meldrum s acids consists of a two-step synthesis (Scheme 10). In the first step, a Knoevenagel reaction between Meldrum s acid (22) and an aldehyde (or sometimes a ketone) yields the C5-alkylidene derivative 23. In the following step, the alkylidene derivative 23 is reduced, to generate the C5-monoalkyl-substituted Meldrum s acid 24.[43 71 104 1051 Alternatively, in the second step, Michael addition of a nucleophile to the conjugated C=C bond in the C5-alkylidene derivative generates a Meldrum s acid 25 monosubstituted on C5 by a more elaborated alkyl.t106 ... [Pg.541]

The synthesis of 2,2-dimethylsuccinic acid (Expt 5.135) provides a further variant of the synthetic utility of the Knoevenagel-Michael reaction sequence. Ketones (e.g. acetone) do not readily undergo Knoevenagel reactions with malonic esters, but will condense readily in the presence of secondary amines with the more reactive ethyl cyanoacetate to give an a, /f-unsaturated cyanoester (e.g. 15). When treated with ethanolic potassium cyanide the cyanoester (15) undergoes addition of cyanide ion in the Michael manner to give a dicyanoester (16) which on hydrolysis and decarboxylation affords 2,2-dimethylsuccinic acid. [Pg.682]

Ketone synthesis by Friedel-Crafts reaction, 12, 16, 62 Knoevenagel reaction, 10, 58... [Pg.48]

Sulfinyl dienes and vinyl sulfoxides have rarely been used in asymmetric hete-ro-Diels-Alder reactions [145]. The first example was reported in 1992 and describes an intramolecular cycloaddition using a heterodiene bearing a chiral sulfinyl group [146a]. In this paper, the conversion of a-p-tolylsulfinyl a,ft-unsaturated ketone 176 (prepared by Knoevenagel reaction of 3-methylcitronellal and (S)-p-toluenesulfinylacetone) into the hetero-Diels-Alder adducts 177... [Pg.94]


See other pages where Ketones Knoevenagel reaction is mentioned: [Pg.423]    [Pg.423]    [Pg.178]    [Pg.1225]    [Pg.379]    [Pg.255]    [Pg.22]    [Pg.50]    [Pg.262]    [Pg.178]    [Pg.1]    [Pg.3]    [Pg.149]    [Pg.948]    [Pg.261]    [Pg.280]    [Pg.73]   


SEARCH



Knoevenagel reaction

© 2024 chempedia.info