Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones from ozonolysis

Many companies spiecialize in the production of chemicals grouped in chemical trees characterized by the same chemical roots (compounds) or the same/similar method of manufacturing. Examples are the Lonza trees based upon (I) hydrogen cyanide, (2) ketene (H2C=C=0) and diketene (4-methyleneoxetan-2-one), and (3) nitrogen heterocycles. A different t3q)e of tree is that of DSM Chemie Linz, which branches out from ozonolysis as the core technology (Stinson, 1996). Wacker Chemie has developed its chemical tree leading to acetoacetates, other acylacetates, and 2-ketones (Stinson, 1997). Table 1.1 shows examples of fine chemicals. [Pg.3]

The reaction takes place in the medium of acetic acid and yields are generally good. This is why the route to obtain aldehydes or ketones from alkenes via glycol formation is preferred over that of ozonolysis. Other compounds which are readily cleaved include those with the groups ... [Pg.276]

To form ketones or aldehydes, a wide variety of oxidizing agents work, including air. The most common/useful oxidants contain chromium or manganese. Ozone, for ozonolysis, is also a useful oxidant to form aldehydes and ketones from alkenes. [Pg.141]

The main strategies for the release of aldehydes or ketones from insoluble supports are sketched in Figure 3.34. These include the hydrolysis of acetals and related derivatives, the treatment of support-bound carboxylic acid derivatives with carbon nucleophiles, and the ozonolysis of resin-bound alkenes. [Pg.117]

It must be noted here that ketone or aldehyde, diperoxides and peroxide oligomers are obtained in non participating solvents whereas alkoxy or alkyl hydroperoxides result from ozonolysis conducted in participating solvents [13]. [Pg.38]

B Ketones and Aldehydes from Ozonolysis of Alkenes (Section 8-15B)... [Pg.830]

Ozone, while somewhat inconvenient to use, is way qiecific in its reactions with alkenes. It is widely employed for selective synthesis, for qualitative and quantitative analysis of unsaturated compounds, and for studying the position of double bonds in macromolecules. The nature of the products obtained from ozonolysis reactions is determitted by the way in which the reaction is carried out Different workup procedures (hydrolytic, reductive or oxidative) can be used to produce alcohols, aldehydes, ketones, carboxylic acids or esters. [Pg.542]

The methyl-substituted BCR is useful for the construction of some iridoid cyclopentanoids. Keto alcohol (137), a crucial intermediate for a synthesis of ( )-chrysomelidial (138), can be prepared from the cycloadduct (108) of cyclopentenone and the methyl-TMM synthon (equation 145)7 This expedient approach to the keto cohol, four steps and 83% overall yield from the bifunctional reagent (107), is a considerable improvement over a previous 14-step sequence using conventional methodologies. Although the initial bicyclic ketone (108) is a 1 1 epimeric mixture, base-catalyzed equilibration of the products from ozonolysis results in only one epimer, having the required stereochemistry. This... [Pg.309]

Ozonolysis of double bonds as a route to ketones and aldehydes is well known. Thiourea may be used for the reduction of the ozonide to afford aldehydes from suitable alkenes. Electrolytic reduction of ozonization products from the oxidation of trisubstituted cyclic alkenes in acetic acid offers a route to hydroxy-ketones. a-Alkoxy-peroxides, from ozonolysis in alcoholic solution, are stable... [Pg.50]

Ozonolysis of lycopadiene followed by oxidative cleavage of the ozonide afforded 6,10,14-trimethylpentadecan-2-one thus establishing the C(14)-C(15) and C(18)-C(19) location of the unsaturations. Moreover, the optical rotation of this ketone was identical with that observed for the 6(R),10(R), 14-trimethylpentadecan-2-one obtained from ozonolysis of natural phytol this result allowed assignment of stereochemistry to the asymmetric centers. Therefore, lycopadiene (45) was identified as... [Pg.30]

Hydrogenation by GC or in solution is frequently used to determine the number of olefinic bonds. The position of these bonds is usually determined by microozonolysis (followed by reduction) and examination of the aldehydic and/or ketonic fragments produced 65—67). The identification of fragments commonly encountered from ozonolysis of... [Pg.10]

The final step can involve introduction of the amino group or of the carbonyl group. o-Nitrobenzyl aldehydes and ketones are useful intermediates which undergo cyclization and aromatization upon reduction. The carbonyl group can also be introduced by oxidation of alcohols or alkenes or by ozonolysis. There are also examples of preparing indoles from o-aminophcnyl-acetonitriles by partial reduction of the cyano group. [Pg.14]

Metalated SAMP- or RAMP-hydrazones derived from alkyl- or arylethyl ketones 3 add to arylaldehydes both diastereo- and enantioselectively. Substituted / -hydroxy ketones with relative syn configuration of the major diastereomer are obtained with de 51-80% and 70-80% ee. However, recrystallization of the aldol adducts, followed by ozonolysis, furnishes diastereo- and enantiomerically pure (lS, S )-. yn-a-mcthyl-/3-hydroxy ketones 5 in 36-51% overall yield. The absolute configuration of the aldol adducts was established by X-ray crystallographic analysis. Starting from the SAMP- or RAMP-hydrazone either enantiomer, (S,S) or (R,R), is available using this methodology16. [Pg.607]

An excellent synthetic method for asymmetric C—C-bond formation which gives consistently high enantioselectivity has been developed using azaenolates based on chiral hydrazones. (S)-or (/ )-2-(methoxymethyl)-1 -pyrrolidinamine (SAMP or RAMP) are chiral hydrazines, easily prepared from proline, which on reaction with various aldehydes and ketones yield optically active hydrazones. After the asymmetric 1,4-addition to a Michael acceptor, the chiral auxiliary is removed by ozonolysis to restore the ketone or aldehyde functionality. The enolates are normally prepared by deprotonation with lithium diisopropylamide. [Pg.975]

The synthetic 31 was converted to the cyanoglucoside osmaronin (41a) which was isolated from a methanolic extract of the leaves of Osmaronia cerasi-formis. Acetylation of 31 gave an acetate (99% yield) which was subjected to ozonolysis to afford a ketone 42. The Horner-Emmons reaction of 42 using diethyl cyanomethylphosphonate furnished (Z)-43a (22% yield from the acetate of 31) and ( )-43b (10% yield from the acetate of 31). Deprotection of (Z)-43a and ( )-43b gave the (3-D-glucosides 41a (83% yield) and 41b (94% yield), respectively. The spectral data of the synthetic 41a were identical with those ( H- and C-NMR) of the natural osmaronin (41a) (Fig. 5). [Pg.260]

As might be expected, a complex mixture of lactones corresponding to abstraction of a hydrogen atom from various sites along the methylene chain was obtained from the photolysis. The mixture of lactones was converted by dehydration, ozonolysis, and hydrolysis to a mixture of ketones. It was found that no functionalization occurs with ester side chains of less than nine carbon atoms. This is probably due to the inability of the carbonyl to approach any methylene closely enough to abstract a hydrogen. The data for side chains of nine carbons or greater is presented in Table 3.11. [Pg.62]

The zwitterion (59) is thereby prevented from reacting with the ketone (58) to form the ozonide in the normal way, and both (58) and (60) may now be isolated and identified. In preparative ozonolysis it is important to decompose the ozonide (57a) by a suitable reductive process, as otherwise H202 is produced (on decomposition of the ozonide with H20, for example) which can further oxidise sensitive carbonyl compounds, e.g. aldehydes— carboxylic acids. [Pg.193]

In contrast to the Johnson s D —> A-ring construction approach, Brown devised an A —> D-ring construction approach [22]. Starting from Wieland-Miescher ketone (30), a common source of the A, B-rings in the de novo synthesis of steroids, the C-ring was introduced via hydrazone allylation, ozonolysis, aldol condensation, and olefin isomerization (31 > 32). The D-ring was assembled by a reductive alkylation... [Pg.28]

In order to establish the correct absolute stereochemistry in cyclopentanoid 123 (Scheme 10.11), a chirality transfer strategy was employed with aldehyde 117, obtained from (S)-(-)-limonene (Scheme 10.11). A modified procedure for the conversion of (S)-(-)-limonene to cyclopentene 117 (58 % from limonene) was used [58], and aldehyde 117 was reduced with diisobutylaluminium hydride (DIBAL) (quant.) and alkylated to provide tributylstannane ether 118. This compound underwent a Still-Wittig rearrangement upon treatment with n-butyl lithium (n-BuLi) to yield 119 (75 %, two steps) [59]. The extent to which the chirality transfer was successful was deemed quantitative on the basis of conversion of alcohol 119 to its (+)-(9-methyI mande I ic acid ester and subsequent analysis of optical purity. The ozonolysis (70 %) of 119, protection of the free alcohol as the silyl ether (85 %), and reduction of the ketone with DIBAL (quant.) gave alcohol 120. Elimination of the alcohol in 120 with phosphorus oxychloride-pyridine... [Pg.249]


See other pages where Ketones from ozonolysis is mentioned: [Pg.1284]    [Pg.329]    [Pg.139]    [Pg.188]    [Pg.81]    [Pg.329]    [Pg.239]    [Pg.246]    [Pg.72]    [Pg.43]    [Pg.363]    [Pg.828]    [Pg.454]    [Pg.438]    [Pg.158]    [Pg.115]    [Pg.236]    [Pg.185]    [Pg.17]    [Pg.169]    [Pg.138]    [Pg.58]   
See also in sourсe #XX -- [ Pg.830 ]




SEARCH



Ketones ozonolysis

Ozonolysis

© 2024 chempedia.info