Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones carbene formation

The main synthetic application of the Wolff rearrangement is for the one-carbon homologation of carboxylic acids.242 In this procedure, a diazomethyl ketone is synthesized from an acyl chloride. The rearrangement is then carried out in a nucleophilic solvent that traps the ketene to form a carboxylic acid (in water) or an ester (in alcohols). Silver oxide is often used as a catalyst, since it seems to promote the rearrangement over carbene formation.243... [Pg.943]

Replacement of an unsaturated phenyliodo group. Formation of unsaturated sulfones by a tandem Michael addition-elimination is a highly efficient process that allows the synthesis of (Z)-l,2-bis(benzenesulfonyl)alkenes from (Z)-jS-(benzenesul-fonyl)alkenyliodonium salts. In S-ketoethynyl(phenyl)iodonium salts the electron-withdrawing power of the ketone group is weaker, the Michael addition is followed by carbene formation. Cyclopentenones are formed. A seemingly direct substitution of alkynyl(phenyl)iodonium salts gives alkynyl sulfones efficiently. ... [Pg.325]

Ketone 4-toluenesulfonylhydrazone salts can be used for carbene formation. The mild thermolysis and the photolysis of these salts leading to diazoalkanes are known as the Bamford-Stevens reaction. If run under more energetic conditions, the metastable diazoalkanes form carbenes and their subsequent products (e.g., alkenes), or, in the presence of mild acids, products of carbocations (see Subsect. 2.5.2). [Pg.315]

Analogous oxa-carbene intermediates arc also indicated in the irradiation of 15b and 34 in methanol. 2 .3T) In these cases the first step in the reaction is probably the 1,3-acyl shift to 16b and 101 followed by a-cleavage and carbene formation. This type of reaction is not restricted to p,Y-unsaturated ketones but is observed also in many saturated ketones. 9 )... [Pg.102]

More definitive evidence for the formation of an oxirene intermediate or transition state was presented recently by Cormier 80TL2021), in an extension of his earlier work on diazo ketones 77TL2231). This approach was based on the realization that, in principle, the oxirene (87) could be generated from the diazo ketones (88) or (89) via the oxocarbenes 90 or 91) or from the alkyne (92 Scheme 91). If the carbenes (90) (from 88) and (91) (from 89) equilibrate through the oxirene (87), and if (87) is also the initial product of epoxidation of (92), then essentially the same mixture of products (hexenones and ketene-derived products) should be formed on decomposition of the diazo ketones and on oxidation of the alkyne this was the case. [Pg.123]

After the initial claim of the synthesis of an oxirene (by the oxidation of propyne Section 5.05.6.3.1) this system reappeared with the claim 31LA(490)20l) that 2-chloro-l,2-diphenyl-ethanone (110) reacted with sodium methoxide to give diphenyloxirene (111), but it was later shown (52JA2082) that the product was the prosaic methoxy ketone (112 Scheme 97) (the formation of 111 from 110 would be an a-elimination carbene-type reaction). Even with strong, nonnucleophilic bases, (110) failed to provide evidence of diphenyloxirene formation (64JA4866). [Pg.126]

Catalytic cyclopropanation of alkenes has been reported by the use of diazoalkanes and electron-rich olefins in the presence of catalytic amounts of pentacarbonyl(rj2-ris-cyclooctene)chromium [23a,b] (Scheme 6) and by treatment of conjugated ene-yne ketone derivatives with different alkyl- and donor-substituted alkenes in the presence of a catalytic amount of pentacarbon-ylchromium tetrahydrofuran complex [23c]. These [2S+1C] cycloaddition reactions catalysed by a Cr(0) complex proceed at room temperature and involve the formation of a non-heteroatom-stabilised carbene complex as intermediate. [Pg.66]

From the reactions presented in this section one can conclude that cyclic acetal formation via addition to a carbene intermediate is a general reaction for type I cleavage of cyclobutanones, tricyclic compounds, and certain bridged bicyclics as minor products. No acetal has been isolated from photolyses of cyclopentanones or cyclohexanones except for the special case of an a-sila ketone previously discussed. [Pg.83]

As it is known from experience that the metal carbenes operating in most catalyzed reactions of diazo compounds are electrophilic species, it comes as no surprise that only a few examples of efficient catalyzed cyclopropanation of electron-poor alkeiies exist. One of those examples is the copper-catalyzed cyclopropanation of methyl vinyl ketone with ethyl diazoacetate 140), contrasting with the 2-pyrazoline formation in the purely thermal reaction (for failures to obtain cyclopropanes by copper-catalyzed decomposition of diazoesters, see Table VIII in Ref. 6). [Pg.125]

Palladium(II) acetate was found to be a good catalyst for such cyclopropanations with ethyl diazoacetate (Scheme 19) by analogy with the same transformation using diazomethane (see Sect. 2.1). The best yields were obtained with monosubstituted alkenes such as acrylic esters and methyl vinyl ketone (64-85 %), whereas they dropped to 10-30% for a,p-unsaturated carbonyl compounds bearing alkyl groups in a- or p-position such as ethyl crotonate, isophorone and methyl methacrylate 141). In none of these reactions was formation of carbene dimers observed. 7>ms-benzalaceto-phenone was cyclopropanated stereospecifically in about 50% yield PdCl2 and palladium(II) acetylacetonate were less efficient catalysts 34 >. Diazoketones may be used instead of diazoesters, as the cyclopropanation of acrylonitrile by diazoacenaph-thenone/Pd(OAc)2 (75 % yield) shows142). [Pg.125]

The reaction, formally speaking a [3 + 2] cycloaddition between the aldehyde and a ketocarbene, resembles the dihydrofuran formation from 57 a or similar a-diazoketones and alkenes (see Sect. 2.3.1). For that reaction type, 2-diazo-l,3-dicarbonyl compounds and ethyl diazopyruvate 56 were found to be suited equally well. This similarity pertains also to the reactivity towards carbonyl functions 1,3-dioxole-4-carboxylates are also obtained by copper chelate catalyzed decomposition of 56 in the presence of aliphatic and aromatic aldehydes as well as enolizable ketones 276). No such products were reported for the catalyzed decomposition of ethyl diazoacetate in the presence of the same ketones 271,272). The reasons for the different reactivity of ethoxycarbonylcarbene and a-ketocarbenes (or the respective metal carbenes) have only been speculated upon so far 276). [Pg.193]

An alternative to the synthesis of epoxides is the reaction of sulfur ylide with aldehydes and ketones.107 This is a carbon-carbon bond formation reaction and may offer a method complementary to the oxidative processes described thus far. The formation of sulfur ylide involves a chiral sulfide and a carbene or carbenoid, and the general reaction procedure for epoxidation of aldehydes may involve the application of a sulfide, an aldehyde, or a carbene precursor as well as a copper salt. This reaction may also be considered as a thiol acetal-mediated carbene addition to carbonyl groups in the aldehyde. [Pg.249]

Acyclic and cyclic allylic ethers and acetals react normally with dihalocarbenes at the C=C bond [e.g. 77, 85, 108,114,121,122], Carbene insertion into the C=C bond of allylic ketones, which can be complicated by competitive reaction by the carbonyl group, can also be effected via the initial formation of the acetal and has been used in the synthesis of cyclonona-3,4- and -4,5-dienones from cyclooctenones [125],... [Pg.323]

In reactions which have some analogy with the interaction of dichloro-carbene/trichloromethyl anions with ketones, 2-dichloromethyloxazolines yield chloro-oxiranes and a-chlorocarbonyl compounds (Scheme 7.18). The formation of the oxiranes is favoured with aldehydes and lower homologue ketones, whereas cyclic ketones and aryl ketones are converted preferentially into the a-chloro carbonyl derivatives [18]. [Pg.338]

The (phosphino)(silyl)carbene 2a readily and cleanly adds to benzalde-hyde and cinnamaldehyde, affording the oxiranes 27 and 28, as single diaste-reomers.40 These results strongly suggest a concerted mechanism, since the formation of a zwitterionic intermediate, such as 29, would result in the formation of a phosphoryl alkene via oxygen atom attack at the phosphorus center. Note that 2a does not react with ketones, which is in line with its nucleophilic character. [Pg.191]

Treatment of aldehydes or ketones with acceptor-substituted carbene complexes leads to formation of enol ethers [1271-1274], oxiranes [1048], or 1,3-dioxolanes [989,1275] by O-alkylation of the carbonyl compound. Carboxylic acid derivatives... [Pg.206]

Suzuki and co-workers achieve aromatic substitution of fluoroarenes with a variety of aldehydes in good yields [91, 92], Imidazolilydene carbene formed from 143 catalyzes the reaction between 4-methoxybenzaldehyde 22a and 4-fluoroni-trobezene 141 to provide ketone 142 in 77% yield (Scheme 20). Replacement of the nitro group with cyano or benzoyl results in low yields of the corresponding ketones. The authors propose formation of the acyl anion equivalent and subsequent addition to the aromatic ring by a Stetter-like process forming XXVIII, followed by loss of fluoride anion to form XXIX. [Pg.105]


See other pages where Ketones carbene formation is mentioned: [Pg.496]    [Pg.420]    [Pg.515]    [Pg.324]    [Pg.295]    [Pg.308]    [Pg.432]    [Pg.520]    [Pg.241]    [Pg.132]    [Pg.986]    [Pg.988]    [Pg.990]    [Pg.122]    [Pg.124]    [Pg.307]    [Pg.108]    [Pg.113]    [Pg.1407]    [Pg.196]    [Pg.423]    [Pg.95]    [Pg.367]    [Pg.335]    [Pg.1217]    [Pg.389]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Carbene formation

Carbenes formation

Carbenes, ketones

Ketones formation

© 2024 chempedia.info