Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition state ketones

In the enol transition state the structure that is the more stable by virtue of having the negative charge on oxygen rather than on carbon also has the least separation of charge. In the ketone transition state the enolate structure that should otherwise be important in stabilizing the... [Pg.190]

Figure 3.24 Fluorinated ketones, transition state analogue inhibitor of chymotrypsin. ... Figure 3.24 Fluorinated ketones, transition state analogue inhibitor of chymotrypsin. ...
Based on the above discussion it was thought that the trifluoro-methyl ketones would be more polarized and thus create a great electrophilicity on the carbonyl carbon which facilitates -OH attack by the serine residue. Yet there is no carbon-oxygen bond to be cleaved In the ketone moiety, and therefore the enzyme-trifluoromethyl ketone transition state complex does not undergo catalytic conversion. The above rationale seems reasonable as trifluoromethyl ketones were found to be extraordinary selective and potent inhibitors of cholinesterases (56) of JHE from T. ni (57) and of meperidine carboxylesterases from mouse and human livers (58). Since JH homologs are alpha-beta unsaturated esters, a sulfide bond was placed beta to the carbonyl in hopes that it would mimic the 2,3-olefln of JHs and yield more powerful inhibitors (54). This empirical approach was extremely successful since it resulted in compounds that were extremely potent inhibitors of JHEs from different species (51,54,59). [Pg.150]

Fair, H.K., Seravalli, J., Arbuckle, T., Quinn, D.M. (1994). Molecular recognition in acetylcholinesterase catalysis free-energy correlations for substrate turnover and inhibition by trifluoro ketone transition-state analogs. Biochemistry 33 8566-76. [Pg.152]

Aldol addition of (R)-tolylsulfinylacetate 70 to aldehydes and prochiral ketones. Transition state model 73 (reaction of the magnesium enolate of 70 with RCHO). [Pg.35]

Figure 1.5. Chemical potential of the initial state, the transition state and the product of the Diels-Alder reaction between methyl vinyl ketone and cyclopentadiene in water as compared to 1-propanol The data are taken from r. 56. Figure 1.5. Chemical potential of the initial state, the transition state and the product of the Diels-Alder reaction between methyl vinyl ketone and cyclopentadiene in water as compared to 1-propanol The data are taken from r. 56.
A more eflicient and general synthetic procedure is the Masamune reaction of aldehydes with boron enolates of chiral a-silyloxy ketones. A double asymmetric induction generates two new chiral centres with enantioselectivities > 99%. It is again explained by a chair-like six-centre transition state. The repulsive interactions of the bulky cyclohexyl group with the vinylic hydrogen and the boron ligands dictate the approach of the enolate to the aldehyde (S. Masamune, 1981 A). The fi-hydroxy-x-methyl ketones obtained are pure threo products (threo = threose- or threonine-like Fischer formula also termed syn" = planar zig-zag chain with substituents on one side), and the reaction has successfully been applied to macrolide syntheses (S. Masamune, 1981 B). Optically pure threo (= syn") 8-hydroxy-a-methyl carboxylic acids are obtained by desilylation and periodate oxidation (S. Masamune, 1981 A). Chiral 0-((S)-trans-2,5-dimethyl-l-borolanyl) ketene thioketals giving pure erythro (= anti ) diastereomers have also been developed by S. Masamune (1986). [Pg.62]

Cyanohydrins are formed by nucleophilic addition of HCN to the carbonyl group of an aldehyde or a ketone Cycloadd ition (Section 10 12) Addition such as the Diels-Alder reaction in which a ring is formed via a cyclic transition state... [Pg.1280]

AUylic organoboranes react via cyclic transition states not only with aldehydes and ketones, but also with alkynes, aHenes, and electron-rich or strained alkenes. Bicyclic stmctures, which can be further transformed into boraadamantanes, are obtained from triaHyl- or tricrotylborane and alkynes (323,438,439). [Pg.321]

More definitive evidence for the formation of an oxirene intermediate or transition state was presented recently by Cormier 80TL2021), in an extension of his earlier work on diazo ketones 77TL2231). This approach was based on the realization that, in principle, the oxirene (87) could be generated from the diazo ketones (88) or (89) via the oxocarbenes 90 or 91) or from the alkyne (92 Scheme 91). If the carbenes (90) (from 88) and (91) (from 89) equilibrate through the oxirene (87), and if (87) is also the initial product of epoxidation of (92), then essentially the same mixture of products (hexenones and ketene-derived products) should be formed on decomposition of the diazo ketones and on oxidation of the alkyne this was the case. [Pg.123]

Substitution reactions by the ionization mechanism proceed very slowly on a-halo derivatives of ketones, aldehydes, acids, esters, nitriles, and related compounds. As discussed on p. 284, such substituents destabilize a carbocation intermediate. Substitution by the direct displacement mechanism, however, proceed especially readily in these systems. Table S.IS indicates some representative relative rate accelerations. Steric effects be responsible for part of the observed acceleration, since an sfp- caibon, such as in a carbonyl group, will provide less steric resistance to tiie incoming nucleophile than an alkyl group. The major effect is believed to be electronic. The adjacent n-LUMO of the carbonyl group can interact with the electnai density that is built up at the pentacoordinate carbon. This can be described in resonance terminology as a contribution flom an enolate-like stmeture to tiie transition state. In MO terminology,.the low-lying LUMO has a... [Pg.301]

This equation implies that the relative reactivity is independent of the specific nucleophile and that relative reactivity is insensitive to changes in position of the transition state. Table 8.4 lists the B values for some representative ketones. The parameter B indicates relative reactivity on a log scale. Cyclohexanone is seen to be a particularly reactive ketone, being almost as reactive as cyclobutanone and more than 10 times as reactive as acetone. [Pg.472]

The relation of rates of reduction with NaBH4 to variations in structure in a wide variety of monocyclic and bridged bicyclic compounds has also been discussed for example, a methyl a to a ketone slows the rate of reduction. Brown ° stated that reactions should not be discussed in terms of axial and equatorial attack, since the rates simply reflect differences in the energies of the possible transition states and not enough is known about the transition state to analyze it. He accepted th concepts of SAC and PDC, but preferred to call them steric strain contrpl and product stability control. ... [Pg.69]


See other pages where Transition state ketones is mentioned: [Pg.334]    [Pg.334]    [Pg.334]    [Pg.334]    [Pg.6]    [Pg.23]    [Pg.23]    [Pg.24]    [Pg.60]    [Pg.106]    [Pg.716]    [Pg.312]    [Pg.319]    [Pg.320]    [Pg.325]    [Pg.269]    [Pg.247]    [Pg.247]    [Pg.84]    [Pg.120]    [Pg.126]    [Pg.656]    [Pg.774]    [Pg.173]    [Pg.436]    [Pg.468]    [Pg.759]    [Pg.67]    [Pg.70]    [Pg.70]    [Pg.70]    [Pg.71]    [Pg.71]    [Pg.225]    [Pg.233]    [Pg.273]    [Pg.431]   
See also in sourсe #XX -- [ Pg.408 ]




SEARCH



Transition state ketone enolate

© 2024 chempedia.info