Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketenes rhodium enolates, aldol reaction

If rhodium enolates are used in a catalytic cycle they can promote aldol reactions under reasonably mild conditions. For example, the aldol reactions of trimethylsilyl enol ethers and ketene silyl acetals (37) with aldehydes can be catalyzed by various rhodium(I) complexes, under essentially neutral conditions, to give p-trimethylsiloxy ketones and esters (38 equation 14 and Table 6). The study of Matsuda and coworkers suggests that use of the rhodium complex Rlu(CO)i2 (39 at 2 mol %) in benzene at 100 C gives best results for the formation of adduct (38 Table 6, entries 1-7). There is negligible diastereoselectivity in most cases. Various cationic ihodium complexes such as (40) also catalyze the reaction. Reetz and Vougioukas have found that this aldol reaction proceeds well with the more reactive ketene silyl acetals, (37) for R = OMe or OEt, in CH2CI2 at room temperature (Table 6, entries 8-13). The intermediacy of an ti -O-bound rhodium enolate, such as (41), in the catalytic cycle is like-... [Pg.310]

If rhodium enolates are used in a catalytic cycle they can promote aldol reactions under reasonably mild conditions. For example, the aldol reactions of trimethylsilyl enol ethers and ketene silyl acetaU (37) with aldehydes can be catalyzed by various rhodium(I) complexes, under essentially neutral conditions, to give p-trimethylsiloxy ketones and esters (38 equation 14 and Table The study of... [Pg.310]

At the time the chemistry of main group enolates flourished already for a while, that of late transition metals had a shadowy existence in synthetic organic chemistry. Their stoichiometric preparation and the sluggish reactivity - tungsten enolates, for example, required irradiation to undergo an aldol addition [24a] - did not seem to predestine them to become versatile tools in asymmetric syntheses [27]. The breakthrough however came when palladium and rhodium enolates were discovered as key intermediates in enantioselective catalyses. After aldol reactions of silyl enol ethers or silyl ketene acetals under rhodium catalysis were shown to occur via enolates of the transition metal [8] and after the first steps toward enantioselective variants were attempted [28], palladium catalysis enabled indeed aldol additions with substantial enantioselectivity... [Pg.6]

The use of chiral Lewis acids for enantioselective Diels-Alder and hetero Diels-Alder reactions and for other processes of C—C bond formation has recently received great attention. Reetz and coworkers reported that a stoichiometric amount of the chiral Lewis acid (137) effectively promotes the reaction of silyl ketene acetal (98) to give the aldol product in 57% yield and 90% ee (equation 48, R = Me2CHCH2—). When a catalytic amount (5 mol %) of the chiral rhodium perchlorate (138) is used, the aldol product is obtained in >75% yield and 12% ee (equation 48 R = Ph). ° Both reactions probably proceed through the corresponding metal enolates. - The development of new efficient chiral catalysts for the Mukaiyama reaction is certainly one of the challenges of the 1990s. [Pg.654]


See other pages where Ketenes rhodium enolates, aldol reaction is mentioned: [Pg.311]    [Pg.311]    [Pg.311]    [Pg.115]    [Pg.4]    [Pg.6]    [Pg.106]   
See also in sourсe #XX -- [ Pg.310 ]

See also in sourсe #XX -- [ Pg.310 ]

See also in sourсe #XX -- [ Pg.310 ]




SEARCH



Enolates aldol reactions

Enols aldol reactions

Ketene enolate

Ketene reaction

Ketenes reactions

Rhodium enolate

Rhodium enolates

Rhodium enolates aldol reaction

Rhodium reaction

© 2024 chempedia.info