Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isocyanates nitrile oxides

Thermolysis of furazan-iV-oxides provides another convenient preparation of alkyl isocyanates nitrile oxides are by-products in this reaction. The Andreasch-Kaluza procedure has been modified to allow the preparation of isocyanates. a-Chloroisocyanates have been converted into a-chloroalkylcarbodi-imides using triphenylphoshinimine. ... [Pg.192]

Isocyanates are derivatives of isocyanic acid, HN=C=0, ia which alkyl or aryl groups, as weU as a host of other substrates, are direcdy linked to the NCO moiety via the nitrogen atom. StmcturaHy, isocyanates (imides of carbonic acid) are isomeric to cyanates, ROCMSI (nitriles of carbonic acid), and nitrile oxides, RCMSI—>0 (derivatives of carboxyUc acid). [Pg.446]

In a manner analogous to classic nitrile iinines, the additions of trifluoro-methylacetonitrile phenylimine occur regiospecifically with activated terminal alkenes but less selectively with alkynes [39], The nitnle imine reacts with both dimethyl fumarate and dimethyl maleate m moderate yields to give exclusively the trans product, presumably via epimenzation of the labile H at position 4 [40] (equation 42) The nitrile imine exhibits exo selectivities in its reactions with norbornene and norbornadiene, which are similar to those seen for the nitrile oxide [37], and even greater reactivity with enolates than that of the nitnle oxide [38, 41], Reactions of trifluoroacetomtrile phenyl imine with isocyanates, isothiocyanates, and carbodiimides are also reported [42]... [Pg.811]

The efficient conversion of the furazans (70) into 1,4-dinitriles (71) is thought to occur via the nitrile oxides (72). Thermal decomposition of the diaziridones (73) in the presence of triethyl phosphite gives the phosphine-imine (75) and the isocyanate (74), which subsequently react together to give the carbodi-imide (76). ... [Pg.247]

The intermolecular dimerization of nitrile oxides has been described as a procedure to prepare Fx with identical substituent both in the 3 and 4 position (Fig. 3). This procedure is a [3 -F 2] cycloaddition where one molecule of nitrile oxide acts as 1,3-dipole and the other as dipolarophile [24-26]. Yu et al. has studied this procedure in terms of theoretical calculus [27,28]. Rearrangement of isocyanates competes with the bimolecular dimerization, with the former becoming dominant at elevated temperatures. [Pg.269]

The Mukaiyama-Hoshino reaction between a nitroalkane and phenyl isocyanate generates a nitrile oxide, and this method has been used in the synthesis of 1,2,4-oxadiazoles as discussed in CHEC-II(1996) <1996CHEC-II(4)179>. In a more recent advance, nitroethane undergoes ultrasound-mediated cycloaddition with trichloroacetonitrile to give the extremely useful (see Equation 11) 5-trichloromethyl-l,2,4-oxadiazole 228 (Equation 45) <1995TL4471>. [Pg.280]

The major fragmentation in mass spectra of 1,2,5-oxadiazoles is attributed to the loss of nitrile and nitrile oxide or expulsion of NO. The conversion of 3,4-dicyano-l,2,5-oxadiazole-2-oxide (3,4-dicyanofuroxan) 10 to cyanogen iV-oxide 11 (Equation 5) was investigated under the conditions of collisional activation (CA) and neutralization-reionization (NR) mass spectrometry. Flash vacuum thermolysis mass-spectrometry (FVT-MS) and flash vacuum thermolysis infra-red (FVT-IR) investigations of furoxans 10, 12, and 13 reveal that small amounts of cyano isocyanate accompany the formation of the main thermolysis product 11 <2000J(P2)473>. [Pg.324]

Di-(2,3,4,6-tetra-0-acetyl-a-D-mannopyranosyl)-l,2,5-oxadiazole 2-oxide 306 was synthesized from D-mannose 305 by a route involving dimerization of mannopyranosyl nitrile oxide as the key step. Three methods were used for the generation of the nitrile oxide isocyanate-mediated dehydration of nitromethylmannose derivatives, treatment of aldoxime with aqueous hypochlorite, and base-induced dehydrochlorination of hydroximoyl chloride (Scheme 76) <2001TL4065, 2002T8505>. [Pg.377]

We entered this field when we studied the photoisomerization of simply substituted nitrile oxides 138 (R = Cl, Br, CN).188 Matrix irradiation yields the corresponding isocyanates 144. In the case of chloronitrile oxide besides the absorptions of chloroisocyanate189 the bands of chloronitrene190 also appear. It can be assumed that the nitrile oxide-isocyanate rearrangement starts with the ring closure 138 - 140.191192... [Pg.147]

These routes are dimerization to furoxans 2 proceeding at ambient and lower temperatures for all nitrile oxides excluding those, in which the fulmido group is sterically shielded, isomerization to isocyanates 3, which proceeds at elevated temperature, is practically the only reaction of sterically stabilized nitrile oxides. Dimerizations to 1,2,4-oxadiazole 4-oxides 4 in the presence of trimethylamine (4) or BF3 (1 BF3 = 2 1) (24) and to 1,4,2,5-dioxadiazines 5 in excess BF3 (1, 24) or in the presence of pyridine (4) are of lesser importance. Strong reactivity of nitrile oxides is based mainly on their ability to add nucleophiles and particularly enter 1,3-dipolar cycloaddition reactions with various dipolarophiles (see Sections 1.3 and 1.4). [Pg.3]

Generation of nitrile oxides by the Mukaiyama procedure, viz., dehydration of primary nitroalkanes with an aryl isocyanate, usually in the presence of Et3N as a base, is of high importance in nitrile oxide chemistry. Besides comprehensive monographs (4, 5), some data concerning the procedure and its use in organic synthesis can be found in References 61 and 62. [Pg.6]

Some routes of chemical transformations of nitrile oxides connected with the problem of their stability were briefly discussed in Section 1.2. Here only two types of such reactions, proceeding in the absence of other reagents, viz., dimerization to furoxans and isomerization to isocyanates, will be considered. All other reactions of nitrile oxides demand a second reagent (in some cases the component is present in the same molecule, and the reaction takes place intramolecularly) namely, deoxygenation, addition of nucleophiles, and 1,3-dipolar cycloaddition reactions. Also, some other reactions are presented, which differ from those mentioned above. [Pg.12]

The stability of o-sulfonylbenzonitrile oxides and their thiophene analogs probably depends on electronic factors. The same factors do not prevent dimerization, as can be seen from data concerning several differently substituted nitrile oxides of the thiophene series (103). Sterically stabilized 3-thiophenecarbonitrile oxides 18 (R = R1 = R2 = Me R = R2 = Me, R1 = i -Pr), when boiled in benzene or toluene, isomerized to isocyanates (isolated as ureas on reaction with aniline) while nitrile oxides 18 with electron-withdrawing substituents (R1 and/or R2 = SOiMe, Br) dimerized to form furoxans 19. [Pg.13]

Among heteroaromatic compounds able to react with nitrile oxides as dipo-larophiles, furan, probably, is the best known. Recently, a novel nitrile oxide was generated from a sulfoximine and converted in situ to a cycloadduct with furan (Scheme 1.25) (287). The starting racemic N-methyl-S-nitromethyl-S-phenylsul-foximine 124 was prepared in 87% yield via nitration of N,S-dimethyl-S-phenyl-sulfoximine. Reaction of 124 with p-chlorophenyl isocyanate and a catalytic quantity of triethylamine, in the presence of furan, afforded dihydrofuroisoxazole 125, the product of nitrile oxide cycloaddition, in 42% yield (65 35 diastereomer ratio). The reaction of 125 with phenyllithium and methyllithium afforded compounds 126, which are products formed by replacement of the sulfoximine group by Ph and Me, respectively. [Pg.44]

Reactions of stable mesito- and duronitrile oxides with 1-chloroalkyl isocyanates R R2CC1NC0 (R1 = CF3, R2 = Ph, 4-MeC6H4 R1 = CC13, R2 = H) gave oxadiazolones 176. The double adducts are formed by the cycloaddition of one nitrile oxide molecule at the isocyanate C=N bond and the nucleophilic addition of the chloroalkyl moiety to a second nitrile oxide molecule (344). [Pg.56]

Treatment of y-nitrothioamides 368 with phenyl isocyanate and triethylamine (nitrile oxide generation conditions) leads to a.j3-unsaturated nitriles 369. The mechanism proposed for this reaction is shown in Scheme 1.42, which includes the dehydration stage of the nitrile oxide formed (418). [Pg.76]

Nitrile oxide precursors have been prepared by the reaction of an isocyanate and an alkyl nitroacetate. These precursors release alkanol and carbon dioxide when heated, to liberate the highly reactive nitrile oxide species. An improved synthetic procedure has been developed to afford novel cross-linking agents based on difunctional, trifunctional and aliphatic precursors. Application of these agents to polymer cross-linking has been demonstrated (527). [Pg.105]

Isoxazoline derivatives of Cgo such as 250 (Scheme 4.40) are accessible by 1,3-dipolar cycloadditions of nitrile oxides to [6,6] double bonds of the fullerene [2, 278, 291-305]. The nitrile oxides 249 with R = methyl, ethyl, ethoxycarbonyl and anthryl are generated in situ from the corresponding nitroalkane, phenyl isocyanate and triethylamine. The isoxazoline derivative of Cgo 250 (with R = anthryl) crystallizes in black prisms out of a solvent mixture of CS2 and acetone (3 2) [292]. X-ray crystal structure analysis shows that addition of the nitrile oxide occurs on a [6,6] double bond of the fullerene framework. [Pg.151]

Dihydro-1,2,4-oxadiazol-5-ones (74) cannot be 7V-acylated by either chlorocarbonyl isocyanate or trichloroacetyl chloride. However, preparation of 4-chlorocarbonyl compounds (73) can be achieved by cycloaddition of stable nitrile oxides to the C=N double bond of chlorocarbonyl isocyanate <888994, 90ZOR339). Compounds (73) decompose with ammonia, primary amines, or primary amides to isocyanates and (74) (Scheme 26). [Pg.195]

Stable arylnitrile oxides undergo cycloaddition to the G=N bond of chlorocarbonyl isocyanate to give compounds (185) <90ZOR339>. In contrast, cycloaddition of nitrile oxides to trichloroacetyl isocyanate occurs across the C=0 double bond leaving the isocyanate group unaffected. From... [Pg.215]

Benzofurazans are thermally more stable but can be cleaved photolytically. For example, benzo-furazan itself in benzene affords cyanoisocyanate (17) and azepine (18), the latter being formed by reaction of the solvent with the putative intermediate acylnitrene (19) (Scheme 5) further supporting evidence for the proposed pathway is provided by trapping the nitrile oxide precursor with dimethyl acetylenedicarboxylate and isolation of the methylurethane derivative of the isocyanate <75JOC2880>. Photolysis of diphenylfurazan yields benzonitrile, diphenylfuroxan and 3,5-diphenyl-1,2,4-oxadiazole. [Pg.236]

The most widely used method for the dehydration of primary nitroalkanes involves their treatment with phenyl isocyanate and triethylamine, introduced in 1960 by Hoshino and Mukaiyama (7). A probable mechanism for the formation of the nitrile oxide is shown in Scheme 6.4. This method is known to be very effective for the preparation of aliphatic or aromatic nitrile oxides. In some cases, the separation of the byproduct A,A -diphenylurea from the reaction mixture may be troublesome. In order to circumvent this problem, 1,4-phenylene diisocyanate was introduced (82,83). The polymeric urea that is formed as a byproduct is largely insoluble in the reaction mixture and can easily be removed. [Pg.368]

The intramolecular nitrile oxide-alkene cycloaddition sequence has been used for the assembly of a great variety of natural products. A target that has received special attention is that of taxol (156), undoubtedly due to its unique structural features, its potent anticancer activity, and its hmited availability from natural sources (318,319). In 1984 Kozikowski et al. found that the treatment of nitro dienone 158 (obtained from the p-benzoquinone derivative 157) with p-chlorophe-nyl isocyanate under Mukaiyama conditions afforded the unexpected eight-mem-bered ring 159, which is related to ring B of taxol (156) (Scheme 6.79). [Pg.437]

Another related synthesis made use of the intramolecular cycloaddition of co-nitroalkene 243, also derived from geraniol epoxide 237. Generation of the expected nitrile oxide dipole using p-chlorophenyl isocyanate and triethylamine quantitatively gave the annulated isoxazoline 244 as a 2 1 mixture of diastereo-isomers (Scheme 6.94). Reductive hydrolysis of the cycloadduct to the aldol product followed by dehydration provided enone 245, which was used to prepare the sesquiterpene nanaimoal 246 (242). [Pg.448]

Shibasaki and co-workers used an intramolecular nitrile oxide cycloaddition to prepare the skeleton of phorbol (272) (Scheme 6.99), a tumor promoter that activates protein kinase C (PKC) (333). Nitroalkene 268 was elaborated in several steps from (+)-3-carene (267) and was subjected to cycloaddition by means of -chlorophenyl isocyanate-triethylamine to give cycloadduct 269 in 88% yield. Reductive hydrolysis employing Raney Ni and boric acid afforded hydroxyketone 270, that was subsequently used for the construction of the optically active derivative 271, which contains the phorbol skeleton (333). [Pg.452]

One of the very first uses of the intramolecular nitrile oxide cycloaddition involved the synthesis of macrocyclic lactones. Asaoka et al. (238) conceived this approach to the 16-membered ring antibiotic A26771B (277). Nitro compound 274 [obtained from 11-acetoxydodecanal (273)] was dehydrated with 4-chlorophenyl isocyanate-triethylamine and this was followed by dipolar cycloaddition, which gave isoxazoline 275 as a 4 1 mixture of diastereomers (Scheme 6.100). [Pg.453]

Few examples of total syntheses have been reported that involve an intramolecular nitrile oxide cycloaddition and ensuing reduction to an aminoalcohol. The very first example was reported by Confalone et al. (334) and involved a synthesis of the naturally occurring vitamin biotin (287). The nitro precursor 284 was easily prepared from cycloheptene. When treated with phenyl isocyanate-triethylamine, cycloaddition led to the all-cis-fused tricyclic isoxazoline 285 with high stereoselectivity (Scheme 6.102). Reduction with LiAlFLj afforded aminoalcohol 286 as a... [Pg.454]

Dihydrooxadiazoles 106 have been syntheised in moderate to high diastereomeric excess by the addition of aromatic nitrile oxides across the C=N bond of the hydrazones 105. The N-N bond can subsequently be cleaved with formic acid, and the chiral auxiliary recycled <99H(50)995>. The oxadiazolone 108 was produced (56%) from the oxime 107 by heating it with phenyl isocyanate <99SC3889>. ... [Pg.231]

Nitrile oxide J -I- 2 cycloaddition.1 A key step in a recent stereospecific synthesis of biotin (6) from cycloheptene (1) is an intramolecular [3 + 2]cyclo-addition of a nitrile oxide (a), obtained by dehydration of a primary nitro compound (3), preferably with phenyl isocyanate. This cycloaddilion is more efficient than the well-known olefinic nitrone cycloaddition. The carbon atoms in 6 derived from cycloheptene are marked with asterisks. [Pg.309]


See other pages where Isocyanates nitrile oxides is mentioned: [Pg.1557]    [Pg.167]    [Pg.3]    [Pg.12]    [Pg.16]    [Pg.55]    [Pg.105]    [Pg.236]    [Pg.241]    [Pg.241]    [Pg.241]    [Pg.259]    [Pg.261]    [Pg.507]    [Pg.518]    [Pg.531]    [Pg.362]    [Pg.364]    [Pg.371]    [Pg.558]   
See also in sourсe #XX -- [ Pg.21 , Pg.385 ]




SEARCH



Nitrile oxides

Nitriles nitrile oxides

Oxidative nitriles

© 2024 chempedia.info