Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron bulk Earth composition

As regards the rock-forming elements, the bulk composition of the Earth is basically chondritic (i.e., solar) with approximately equal abundances of magnesium, sihcon, and iron atoms. In detail, however, there are some variations in chemistry among chondritic meteorites, and from a detailed comparison with meteorites it is concluded that the bulk Earth composition has similarities with the chemical composition group of carbonaceous chondrites. [Pg.738]

Data for the content of lithophile elements in the Earth plus knowledge of the iron content of the mantle and core together establish a bulk Earth compositional model (McDonough, 2001). This model assumes chondritic proportions of Fe/Ni in the Earth, given limited Fe/Ni variation in chondritic meteorites (see below). This approach yields... [Pg.1250]

For this review the Earth s composition will be considered to be more similar to carbonaceous chondrites and somewhat less like the high-iron end-members of the ordinary or enstatite chondrites, especially with regard to the most abundant elements (iron, oxygen, silicon, and magnesium) and their ratios. However, before reaching any firm conclusions about this assumption, we need to develop a compositional model for the Earth that can be compared with different chondritic compositions. To do this we need to (i) classify the elements in terms of their properties in the nebula and the Earth and (2) establish the absolute abundances of the refractory and volatile elements in the mantle and bulk Earth. [Pg.1248]

The U (uranium)-Th (thorium)-Pb (lead) isotopic system represents three independent decay schemes and is a powerful but complex tool with which to unravel the history of the Earth s mantle (Text box 3.2). During planetary accretion U and Th are refractory, lithophile elements and will reside in the mantle. Pb on the other hand is a volatile and chalcophile/ siderophile element and may in part, be stored in the core. Initial U and Th concentrations are derived from chondritic meteorites, and initial Pb isotope compositions are taken from the iron-sulfide troilite phase in the Canyon Diablo meteorite. The initial bulk Earth U/Th ratio was 4.0 0.2 (Rocholl Jochum, 1993). [Pg.117]

The composition of the Earth was determined both by the chemical composition of the solar nebula, from which the sun and planets formed, and by the nature of the physical processes that concentrated materials to form planets. The bulk elemental and isotopic composition of the nebula is believed, or usually assumed to be identical to that of the sun. The few exceptions to this include elements and isotopes such as lithium and deuterium that are destroyed in the bulk of the sun s interior by nuclear reactions. The composition of the sun as determined by optical spectroscopy is similar to the majority of stars in our galaxy, and accordingly the relative abundances of the elements in the sun are referred to as "cosmic abundances." Although the cosmic abundance pattern is commonly seen in other stars there are dramatic exceptions, such as stars composed of iron or solid nuclear matter, as in the case with neutron stars. The... [Pg.14]

The Se/ Se ratios of CDT and 3 other iron meteorite samples were determined by Rouxel et al. (2002). CDT had the greatest ratio, and the other meteorites ranged from -0.2%o to -0.6%o relative to CDT. Four basaltic reference materials, two glassy MORB s, and one peridotite also analyzed by Rouxel et al. (2002) were within 0.2%o of CDT. These results suggest that the earth s mantle is close in Se isotope composition to CDT, and that CDT is, tentatively, a reasonable proxy for the bulk composition of the earth. [Pg.306]

In contrast to their rather low dissolved concentrations in seawater, some of the trace metals, e g., iron and aluminum, along with oxygen and silicon, comprise the bulk of Earth s crust. Some trace elements are micronutrients and, hence, have the potential to control plankton species composition and productivity. This provides a connection in the crustal-ocean-atmosphere fectory to the carbon cycle and global climate. [Pg.259]

Earth, relative to average solar system (chondrites). However, the tungsten isotopic difference between early metals and the silicate Earth on its own does not provide constraints on timing. One needs to know the atomic abundance of Hf at the start of the solar system (or the ( Hf/ Hf)Bssn the bulk solar system initial ) and the composition of the chondritic reservoirs from which most metal and silicate reservoirs were segregated. In other words, it is essential to know to what extent the extra in the silicate Earth relative to iron meteorites accumulated in the accreted chondritic precursor materials or proto-Earth with an HfAV 1 prior to core formation, and to what extent it reflects an accelerated change in isotopic composition because of the high HfAV ( 15) in the silicate Earth. [Pg.519]

In addition to making comparisons with chondrites, the bulk composition of the Earth also has been defined in terms of a model mixture of highly reduced, refractory material combined with a much smaller proportion of a more oxidized volatile-rich component (Wanke, 1981). These models follow on from the ideas behind earlier heterogeneous accretion models. According to these models, the Earth was formed from two components. Component A was highly reduced and free of all elements with equal or higher volatility than sodium. All other elements were in Cl relative abundance. The iron and siderophile elements were in metallic form, as was part of the silicon. Component B was oxidized and contained all elements, including those more volatile than sodium in Cl relative abundance. Iron and all siderophile and lithophile elements were mainly in the form of oxides. [Pg.525]

The six most abundant, nonvolatile rock-forming elements in the Sun are Si (100), Mg (104), Fe (86), S (43), Al (8.4), and Ca (6.2). The numbers in parentheses are atoms relative to 100 Si atoms. They are derived from element abundances in Cl-meteorites which are identical to those in the Sun except that Cl-abundances are better known (see Chapter 1.03). From geophysical measurements it is known that the Earth s core accounts for 32.5% of the mass of the Earth. Assuming that the core contains only iron, nickel, and sulfur allows us to calculate the composition of the silicate fraction of the Earth by mass balance. This is the composition of the bulk silicate earth (BSE) or the primitive earth mantle (PM). The term primitive implies the composition of the Earth s mantle before crust and after core formation. [Pg.707]

Studies of transition behavior in compositionally impure minerals thus offer insights into real rather than idealized mineral transformations. These effects are important among the low-density silicates that constitute the bulk of the Earth s crust, where substitutions of tunnel and cavity ions can occur comparatively freely within the open frameworks of these structures. In addition, substitution reactions are significant in mantle minerals, where Fe-Mg exchange is especially important and can control the transition behavior of a host of Fe-Mg silicates and oxides (reviewed in Fei 1998). Likewise, the iron in the inner core is alloyed with a light element whose identity remains a matter of much debate (Sherman 1995, Alfe et al. 1999), but whose presence may influence the crystalline structure of the core. [Pg.135]


See other pages where Iron bulk Earth composition is mentioned: [Pg.2248]    [Pg.157]    [Pg.26]    [Pg.481]    [Pg.729]    [Pg.729]    [Pg.1248]    [Pg.1251]    [Pg.1263]    [Pg.25]    [Pg.25]    [Pg.551]    [Pg.554]    [Pg.566]    [Pg.182]    [Pg.157]    [Pg.96]    [Pg.293]    [Pg.339]    [Pg.220]    [Pg.496]    [Pg.511]    [Pg.94]    [Pg.1051]    [Pg.32]    [Pg.303]    [Pg.706]    [Pg.1247]    [Pg.1269]    [Pg.1662]    [Pg.220]    [Pg.2]    [Pg.550]    [Pg.18]   
See also in sourсe #XX -- [ Pg.554 , Pg.556 ]




SEARCH



Bulk composition

Earth, composition

Iron composition

© 2024 chempedia.info