Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iridium ketone hydrogenation

Scheme 15 Iridium-catalyzed hydrogen-mediated coupling of alkyl-substituted alkynes to activated ketones and aldehydes. Conditions a ligand = BIPHEP, solvent = toluene, T = 80 °C b ligand = DPPF, solvent = toluene, T = 60 °C c ligand = BIPHEP, solvent = DCE,... Scheme 15 Iridium-catalyzed hydrogen-mediated coupling of alkyl-substituted alkynes to activated ketones and aldehydes. Conditions a ligand = BIPHEP, solvent = toluene, T = 80 °C b ligand = DPPF, solvent = toluene, T = 60 °C c ligand = BIPHEP, solvent = DCE,...
The mechanism for the iridium-catalyzed hydrogen transfer reaction between alcohols and ketones has been investigated, and there are three main reaction pathways that have been proposed (Scheme 4). Pathway (a) involves a direct hydrogen transfer where hydride transfer takes place between the alkoxide and ketone, which is simultaneously coordinated to the iridium center. Computational studies have given support to this mechanism for some iridium catalysts [18]. [Pg.80]

In this review, the main contributions of computational chemistry to the understanding of the mechanisms of rhodium-, ruthenium-, and iridium-catalyzed hydrogenation reactions of aUcenes, enamides, acrylamides, and ketones are summarized. These studies provided atomistic-level detail into the rate- and stereoselectivity-determining steps for a class of reactions that is widely used in organic synthesis at both the laboratory and the industrial scale. [Pg.107]

Other indole syntheses of this type include the iridium-catalyzed hydrogen transfer of amine-substituted benzylic alcohols (130L3876), the intramolecular dehydrative coupling of tertiary amines with ketones (13OL6018), and the sequential alkylation/cyclization/isomerization of 3-(o-tri luoroacetamidoaryl)-l-propargylic esters (13T9494). [Pg.167]

L = P(CH3)3 or CO, oxidatively add arene and alkane carbon—hydrogen bonds (181,182). Catalytic dehydrogenation of alkanes (183) and carbonylation of bensene (184) has also been observed. Iridium compounds have also been shown to catalyse hydrogenation (185) and isomerisation of unsaturated alkanes (186), hydrogen-transfer reactions, and enantioselective hydrogenation of ketones (187) and imines (188). [Pg.182]

Reduction of unsaturated aldehydes seems more influenced by the catalyst than is that of unsaturated ketones, probably because of the less hindered nature of the aldehydic function. A variety of special catalysts, such as unsupported (96), or supported (SJ) platinum-iron-zinc, plalinum-nickel-iron (47), platinum-cobalt (90), nickel-cobalt-iron (42-44), osmium (<55), rhenium heptoxide (74), or iridium-on-carbon (49), have been developed for selective hydrogenation of the carbonyl group in unsaturated aldehydes. None of these catalysts appears to reduce an a,/3-unsaturated ketonic carbonyl selectively. [Pg.71]

More recently, the same type of hgand was used to form chiral iridium complexes, which were used as catalysts in the hydrogenation of ketones. The inclusion of hydrophihc substituents in the aromatic rings of the diphenylethylenediamine (Fig. 23) allowed the use of the corresponding complexes in water or water/alcohol solutions [72]. This method was optimized in order to recover and reuse the aqueous solution of the catalyst after product extraction with pentane. The combination of chiral 1,2-bis(p-methoxyphenyl)-N,M -dimethylethylenediamine and triethyleneglycol monomethyl ether in methanol/water was shown to be the best method, with up to six runs with total acetophenone conversion and 65-68% ee. Only in the seventh run did the yield and the enantioselectivity decrease slightly. [Pg.184]

Hydrogenation of substrates having a polar multiple C-heteroatom bond such as ketones or aldehydes has attracted significant attention because the alcohols obtained by this hydrogenation are important building blocks. Usually ruthenium, rhodium, and iridium catalysts are used in these reactions [32-36]. Nowadays, it is expected that an iron catalyst is becoming an alternative material to these precious-metal catalysts. [Pg.35]

In addition, Peruzzini et al. developed, in 2007, iridium complexes of planar-chiral ferrocenyl phosphine-thioether ligands that were tested in the hydrogenation of simple alkyl aryl ketones.These complexes were diastereoselec-tively generated in high yields (85-90%) by addition of the corresponding... [Pg.265]

Compared with the Osborn-type cationic rhodium complexes (Section III,A,3), the iridium analogs are much less active for asymmetric hydrogenation of ketones (280). [Pg.357]

Transition-metal catalysts are, in general, more active than the MPVO catalysts in the reduction of ketones via hydrogen transfer. Especially, upon the introduction of a small amount of base into the reaction mixture, TOFs of transition-metal catalysts are typically five- to 10-fold higher than those of MPVO catalysts (see Table 20.7, MPVO catalysts entries 1-20, transition-metal catalysts entries 21-53). The transition-metal catalysts are less sensitive to moisture than MPVO catalysts. Transition metal-catalyzed reactions are frequently carried out in 2-propanol/water mixtures. Successful transition-metal catalysts for transfer hydrogenations are based not only on iridium, rhodium or ruthenium ions but also on nickel [93], rhenium [94] and osmium [95]. It has been reported that... [Pg.602]

Other functional groups which have a heteroatom rather than a hydroxyl group capable of directing the hydrogenation include alkoxyl, alkoxycarbonyl, carboxylate, amide, carbamate, and sulfoxide. The alkoxy unit efficiently coordinates to cationic iridium or rhodium complexes, and high diastereoselectivity is induced in the reactions of cyclic substrates (Table 21.3, entries 11-13) [25, 28]. An acetal affords much lower selectivity than the corresponding unsaturated ketone (Table 21.3, entries 14 and 15) [25]. [Pg.650]

In this chapter, we will focus on the rhodium-catalyzed hydrogenation of functionalized ketones and the development of chiral phosphorous ligands for this process. Although there are other chiral phosphorous ligands which are effective for ruthenium-, iridium-, platinum-, titanium-, zirconium-, and palladium-catalyzed hydrogenation, they will not be discussed here. For details of these chemistries, the reader should refer to other chapters of this book. [Pg.1165]

Alcohols will serve as hydrogen donors for the reduction of ketones and imi-nium salts, but not imines. Isopropanol is frequently used, and during the process is oxidized into acetone. The reaction is reversible and the products are in equilibrium with the starting materials. To enhance formation of the product, isopropanol is used in large excess and conveniently becomes the solvent. Initially, the reaction is controlled kinetically and the selectivity is high. As the concentration of the product and acetone increase, the rate of the reverse reaction also increases, and the ratio of enantiomers comes under thermodynamic control, with the result that the optical purity of the product falls. The rhodium and iridium CATHy catalysts are more active than the ruthenium arenes not only in the forward transfer hydrogenation but also in the reverse dehydrogenation. As a consequence, the optical purity of the product can fall faster with the... [Pg.1224]

Iridium-Catalyzed Asymmetric Hydrogenation of Olefins with Chiral N,P and C,N Ligands 53 Table 2 Enantioselective hydrogenations of linear a,(3-unsaturated ketones... [Pg.53]

There have been many reports of the use of iridium-catalyzed transfer hydrogenation of carbonyl compounds, and this section focuses on more recent examples where the control of enantioselectivity is not considered. In particular, recent interest has been in the use of iridium A -heterocyclic carbene complexes as active catalysts for transfer hydrogenation. However, alternative iridium complexes are effective catalysts [1, 2] and the air-stable complex 1 has been shown to be exceptionally active for the transfer hydrogenation of ketones [3]. For example, acetophenone 2 was converted into the corresponding alcohol 3 using only 0.001 mol% of this... [Pg.78]

The same catalyst has also been used for the reduction of aldehydes to primary alcohols [7]. Several other iridium W-heterocyclic carbene complexes have been shown to be successful as catalysts for the transfer hydrogenation of ketones [8-12], including the interesting complex 6, where the cyclopentadienyl ring is tethered to the 77-heterocyclic carbene. Complex 6 was employed at low catalyst loading for the reduction of a range of ketones including the conversion of cyclohexanone 11 into cyclohexanol 12 [13]. [Pg.80]


See other pages where Iridium ketone hydrogenation is mentioned: [Pg.268]    [Pg.1021]    [Pg.77]    [Pg.206]    [Pg.113]    [Pg.84]    [Pg.106]    [Pg.74]    [Pg.369]    [Pg.144]    [Pg.145]    [Pg.139]    [Pg.91]    [Pg.29]    [Pg.180]    [Pg.259]    [Pg.270]    [Pg.279]    [Pg.113]    [Pg.151]    [Pg.383]    [Pg.427]    [Pg.638]    [Pg.653]    [Pg.1073]    [Pg.1216]    [Pg.1344]    [Pg.117]    [Pg.166]    [Pg.39]    [Pg.78]   
See also in sourсe #XX -- [ Pg.364 ]




SEARCH



Hydrogenation ketones

Iridium hydrogenation

Iridium-catalyzed hydrogenation ketones

Ketones hydrogen

© 2024 chempedia.info