Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iridium arene

The dichlororuthenium arene dimers are conveniently prepared by refluxing ethanolic ruthenium trichloride in the appropriate cyclohexadiene [19]. The di-chloro(pentamethylcyclopentadienyl) rhodium dimer is prepared by refluxing Dewar benzene and rhodium trichloride, whilst the dichloro(pentamethylcyclo-pentadienyl)iridium dimer is prepared by reaction of the cyclopentadiene with iridium trichloride [20]. Alternatively, the complexes can be purchased from most precious-metal suppliers. It should be noted that these ruthenium, rhodium and iridium arenes are all fine, dusty, solids and are potential respiratory sensitizers. Hence, the materials should be handled with great care, especially when weighing or charging operations are being carried out. Appropriate protective clothing and air extraction facilities should be used at all times. [Pg.1218]

IRIDIUM ARENE (See Arene Complexes) AND CYCLOPENTADIENYL (See Cyclopentadienyl) COMPLEXES... [Pg.1855]

Cobalt, Rhodium and Iridium.- Arene complexes of iridium... [Pg.373]

L = P(CH3)3 or CO, oxidatively add arene and alkane carbon—hydrogen bonds (181,182). Catalytic dehydrogenation of alkanes (183) and carbonylation of bensene (184) has also been observed. Iridium compounds have also been shown to catalyse hydrogenation (185) and isomerisation of unsaturated alkanes (186), hydrogen-transfer reactions, and enantioselective hydrogenation of ketones (187) and imines (188). [Pg.182]

The isolated Ru(0) nanoparticles were used as solids (heterogeneous catalyst) or re-dispersed in BMI PP6 (biphasic liquid-liquid system) for benzene hydrogenation studies at 75 °C and under 4 bar H2. As previously described for rhodium or iridium nanoparticles, these nanoparticles (heterogeneous catalysts) are efficient for the complete hydrogenation of benzene (TOP = 125 h ) under solventless conditions. Moreover, steric substituent effects of the arene influenced the reaction time and the decrease in the catalytic TOP 45, 39 and 18h for the toluene, iPr-benzene, tBu-benzene hydrogenation, respectively, finally. The hydrogenation was not total in BMI PPg, a poor TOE of 20 h at 73% of conversion is obtained in the benzene hydrogenation. [Pg.269]

Finally, these aqueous suspensions of rhodium(O) and iridium(O) are the most efficient systems for the hydrogenation of a large variety of mono-, di-substituted and/or functionalized arene derivatives. Moreover, in our approach, the reaction mixture forms a typical two-phase system with an aqueous phase containing the nanoparticle catalyst able to be easily reused in a recycling process. [Pg.273]

Mevellec, V., Roucoux, A., Ramirez, E., Philippot, K. and Chaudret, B. (2004) Surfactant-stabilized aqueous iridium(O) colloidal suspension an effident reusable catalyst for hydrogenation of arenes in biphasic media. Advanced Synthesis and Catalysis, 346 (1), 72-76. [Pg.86]

Homogeneous iridium(m) catalysts mediate arene C-H activations to form anti-Markovnikov products as in the hydroarylation of propene (Equation (631).64... [Pg.122]

Remarkable carbon-boron bond-forming reactions are catalyzed by iridium complexes and proceed at room temperature with excellent regioselectivity, governed by steric factors. Heteroarenes are borylated in the 2-position and this reaction is generally tolerant of halide substituents on the arene (Equations (87) and (88)). [Pg.128]

The most fundamental reaction is the alkylation of benzene with ethene.38,38a-38c Arylation of inactivated alkenes with inactivated arenes proceeds with the aid of a binuclear Ir(m) catalyst, [Ir(/x-acac-0,0,C3)(acac-0,0)(acac-C3)]2, to afford anti-Markovnikov hydroarylation products (Equation (33)). The iridium-catalyzed reaction of benzene with ethene at 180 °G for 3 h gives ethylbenzene (TN = 455, TOF = 0.0421 s 1). The reaction of benzene with propene leads to the formation of /z-propylbenzene and isopropylbenzene in 61% and 39% selectivities (TN = 13, TOF = 0.0110s-1). The catalytic reaction of the dinuclear Ir complex is shown to proceed via the formation of a mononuclear bis-acac-0,0 phenyl-Ir(m) species.388 The interesting aspect is the lack of /3-hydride elimination from the aryliridium intermediates giving the olefinic products. The reaction of substituted arenes with olefins provides a mixture of regioisomers. For example, the reaction of toluene with ethene affords m- and />-isomers in 63% and 37% selectivity, respectively. [Pg.220]

The iridium complex composed of l/2[ Ir(OMe)(cod)2 ] and 4,4 -di-/ r/-butyl-2,2 -bipyridine (dtbpy) shows a high catalytic activity for aromatic G-H silylation of arenes by l,2-di-/z r/-butyl-l,l,2,2,-tetrafluorodisilane.142 The reaction of 1,2-dimethylbenzene with l,2-di-/< r/-butyl-l,l,2,2,-tetrafluorodisilane in the presence of l/2[ Ir(OMe)(cod)2 ] and dtbpy gives 4-silyl-l,2-dimethylbenzene in 99% yield (Equation (103)), which can be utilized for other functionalizations such as arylation and alkylation. [Pg.239]

The reversal of hydrogenation is also possible, as evidenced by the many iridium catalysts for alkane dehydrogenation to alkenes or arenes, though to date this area is of mainly academic interest rather than practical importance [19]. [Pg.39]

Alcohols will serve as hydrogen donors for the reduction of ketones and imi-nium salts, but not imines. Isopropanol is frequently used, and during the process is oxidized into acetone. The reaction is reversible and the products are in equilibrium with the starting materials. To enhance formation of the product, isopropanol is used in large excess and conveniently becomes the solvent. Initially, the reaction is controlled kinetically and the selectivity is high. As the concentration of the product and acetone increase, the rate of the reverse reaction also increases, and the ratio of enantiomers comes under thermodynamic control, with the result that the optical purity of the product falls. The rhodium and iridium CATHy catalysts are more active than the ruthenium arenes not only in the forward transfer hydrogenation but also in the reverse dehydrogenation. As a consequence, the optical purity of the product can fall faster with the... [Pg.1224]

Typically, heterogeneous transfer hydrogenations are carried out at higher temperatures. The Noyori-Ikariya ruthenium arene catalysts are stable up to temperatures around 80 °C, whilst the rhodium and iridium CATHy catalysts are... [Pg.1236]

Many related complexes of iridium and rhodium undergo the oxidative addition reaction of alkanes and arenes [1]. Alkane C-H bond oxidative addition and the reverse reaction is supposed to proceed via the intermediacy of c-alkane metal complexes [4], which might involve several bonding modes, as shown in Figure 19.5 (for an arene the favoured bonding mode is r 2 via the K-electrons). [Pg.390]

In the realm of C-H bond transformations applied toward the synthesis of fine chemicals, iridium has not achieved the prominence attained in recent years by the second-row platinum group metals, particularly palladium [10]. A notable exception, however, has been the leading role of iridium in the valuable chemistry of arene borylation [11]. [Pg.140]

Iridium-catalyzed formation of B-C bonds from arene C-H bonds was first reported by Smith and coworkers [73]. They demonstrated that the archetypal C-H activation products, Cp lr(PMe3)(H)(R), could mediate B-C bond formation (R = Ph, cyclohexyl) and were able to effect the catalytic borylation of benzene with HBpin (8) to produce CgHsBpin and H2 at 150°C (8). [Pg.148]

One of the most active and well-studied catalytic borylation systems is that generated from iridium(l) precursors such as [lr(COD)Cl]2 or [lr(COD)(OMe)]2 and bipyridine type ligands such as 2,2 -bipyridine or 4,4 -di-ferf-butyl-2,2 -bipyridine (dtbpy). In 2002, Ishiyama, Miyaura, and Hartwig et al. reported that the combination of [lr(COD)Cl]2 and 2,2 -bipyridine catalyzes arene borylation in the presence of excess arene under mild conditions (80°C). When the catalyst is generated from [lr(COE)2Cl]2 and dtbpy, the reaction proceeds even at room temperature [78, 79]. The same groups optimized conditions and found that the combination of [Ir(COD) (OMe)]2 and dtbpy (10) is a highly effective catalyst in the borylation of arenes so that reactions can be successfully performed with equimolar ratio of arenes and... [Pg.149]

Extensive studies of kinetics and isotope effects by Hartwig and coworkers support the mechanism shown in Scheme 5 for the lr(I)/dtbpy catalyzed borylation [81]. In particular, these studies indicate that the iridium(III) trisboryl bipyridine complex (10) is the species that activates the arene C-H bond this is in agreement with DFT calculations by Sakaki et al. predicting the key intermediacy of the trisboryl complex and the seven-coordinated Ir(V) species resulting from C-H addition [82]. C-H addition to Ir(III) was also proposed in the (Ind)Ir(COD)/ phosphine-catalyzed borylation by Smith et al. [76]. [Pg.150]

Several arylations involving reactive alkenes such as norbomene or allenes have been reported. Togni and coworkers have shown that norbomene is selectively added to the ortho positions of phenols to produce a mixture of 30 and 31 in 69% and 13% yield, respectively, after 72 hours at 100°C (22) [108, 109]. 1,1-dimethylallene also reacts with aromatic carboxamides (33) to produce prenylation products (34) in the presence of cationic iridium complexes (23) [110]. In both cases, initial ortho C-H bond activation in arenes directed by coordinating groups followed by olefin insertion has been proposed. [Pg.156]


See other pages where Iridium arene is mentioned: [Pg.29]    [Pg.31]    [Pg.1853]    [Pg.1852]    [Pg.424]    [Pg.311]    [Pg.29]    [Pg.31]    [Pg.1853]    [Pg.1852]    [Pg.424]    [Pg.311]    [Pg.211]    [Pg.954]    [Pg.1122]    [Pg.335]    [Pg.329]    [Pg.242]    [Pg.322]    [Pg.39]    [Pg.46]    [Pg.242]    [Pg.456]    [Pg.1217]    [Pg.1223]    [Pg.86]    [Pg.148]    [Pg.152]    [Pg.152]    [Pg.154]    [Pg.155]    [Pg.158]    [Pg.29]    [Pg.29]   
See also in sourсe #XX -- [ Pg.31 ]




SEARCH



Dihydrido Arene Iridium Triisopropylphosphine Complexes

Iridium arene containing

Iridium arenes

Iridium arenes

Iridium complexes arene

© 2024 chempedia.info