Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionization potentials correlation effects

Photoelectron spectroscopic studies show that the first ionization potential (lone pair electrons) for cyclic amines falls in the order aziridine (9.85 eV) > azetidine (9.04) > pyrrolidine (8.77) >piperidine (8.64), reflecting a decrease in lone pair 5-character in the series. This correlates well with the relative vapour phase basicities determined by ion cyclotron resonance, but not with basicity in aqueous solution, where azetidine (p/iTa 11.29) appears more basic than pyrrolidine (11.27) or piperidine (11.22). Clearly, solvation effects influence basicity (74JA288). [Pg.239]

The semi-empirical methods have better MAD s than th Hartree-Fock-based methods, indicating that their parametrization ha accounted for some of the effects of electron correlation. However, thei maximum errors are very large. Semi-empirical methods are especiall poor at predicting ionization potentials and proton affinities. [Pg.149]

Although alkyl groups in general increase the rates of electrophilic addition, we have already mentioned (p. 974) that there is a different pattern depending on whether the intermediate is a bridged ion or an open carbocation. For brominations and other electrophilic additions in which the first step of the mechanism is rate determining, the rates for substituted alkenes correlate well with the ionization potentials of the alkenes, which means that steric effects are not important. Where the second step is rate determining [e.g., oxymercuration (15-3), hydroboration (15-17)], steric effects are important. ... [Pg.983]

A number of correlations of ionization potentials for substituted benzenes (40-42), benzyl (43), phenoxy (44), and alkyl (45) radicals and substituted pyridines (46) with the simple Hammett equation have been reported. Charton (47) has studied the application of the extended Hammett equation to substituted ethylenes and carbonyl compounds. The sets studied here are reported in Table II (sets 2-10 and 2-11). Results of the correlations are set forth in Table 111. The results obtained are much improved by the exclusion of the values for X = C2 H3, Ac, F, H and OAc from set 2-10 (set 2-lOA) and the value for X = H from set 2-11 (set 2-11 A). The composition of the electrical effect corresponds to that found for the Op constants as is shown by the pR values reported in Table IV. [Pg.90]

The ionization potential (7.9 eV) falls right outside the bracket of experimental IP s reported for carbon clusters with 40 to 100 atoms (6.42 eV IP 7.87 eV, Ref. 11). Inclusion of correlation effects will lower the calculated ASCF IP by 0.25 to 0.50 eV, so that the corrected IP will be at the upper end of the experimental IP>bracket. Due to the diffuseness of the n orbital from which an electron is removed, the correlation error in the ASCF value will be smaller than in cases where an electron is removed from a well localized bond. In these cases a correction of 1 eV is usually applied. [Pg.44]

Schwerdtfeger, P. (1991) Relativistic and Electron Correlation Contributions in Atomic and Molecular Properties. Benchmark Calculations on Au and Au2. Chemical Physics Letters, 183, 457 163. Neogrady, P., Kello, V., Urban, M. and Sadlej, A.J. (1997) Ionization Potentials and Electron Affinities of Cu, Ag, and Au Electron Correlation and Relativistic Effects. International Journal of Quantum Chemistry, 63, 557-565. [Pg.221]

Ionic dissociation of carbon-carbon a-bonds in hydrocarbons and the formation of authentic hydrocarbon salts, 30, 173 Ionization potentials, 4, 31 Ion-pairing effects in carbanion reactions, 15, 153 Ions, organic, charge density-NMR chemical shift correlations, 11,125 Isomerization, permutational, of pentavalent phosphorus compounds, 9, 25 Isotope effects, hydrogen, in aromatic substitution reactions, 2,163... [Pg.338]

Figure 1 shows the electron attachment energies (AE) and ionization potentials (IP) of silyl substituted 7t-systems and related compounds [4], AE can be correlated with the energy level of the LUMO (lowest unoccupied molecular orbital) and IP can be correlated with the energy level of the HOMO (highest occupied molecular orbital). For a-substituted 7t-systems, the introduction of a silyl group produces a decrease in the tc -(LUMO) level. This effect is attributed to the interaction between a low-lying silicon-based unoccupied orbital such as the empty d orbital of silicon and the it orbital (d -p interaction) as shown in Fig. 2. Recent investigations on these systems, however, indicate that d orbitals on silicon are not necessarily required for interpreting this effect a-effects of SiR3 can also be explained by the interaction between Si-R a orbitals and the 7r-system. Figure 1 shows the electron attachment energies (AE) and ionization potentials (IP) of silyl substituted 7t-systems and related compounds [4], AE can be correlated with the energy level of the LUMO (lowest unoccupied molecular orbital) and IP can be correlated with the energy level of the HOMO (highest occupied molecular orbital). For a-substituted 7t-systems, the introduction of a silyl group produces a decrease in the tc -(LUMO) level. This effect is attributed to the interaction between a low-lying silicon-based unoccupied orbital such as the empty d orbital of silicon and the it orbital (d -p interaction) as shown in Fig. 2. Recent investigations on these systems, however, indicate that d orbitals on silicon are not necessarily required for interpreting this effect a-effects of SiR3 can also be explained by the interaction between Si-R a orbitals and the 7r-system.
The effect of a biologically active compound is based on its ability to form a complex with a receptor. The intensity of the biological effect is proportional to the stability of this complex, which is dependent on the strength of the interaction of the effector molecule with the active centre of the receptor. The electron structure of the molecule can be decisive for this interaction and this may explain the correlation of ionization potentials and pharmacological properties of certain compounds. [Pg.180]

On the assumption that all the reported aldehyde first ionization potentials refer to the oxygen lone-pair electrons Cook (1958) has classified the effect of substituents into two classes, A and B, according to whether inductive or resonance effects predominate. Two different linear correlations (Fig. 14) were found between ionization potential and the carbonyl stretching frequency. Anomalies were noted for diacetyl, benzaldehyde and mesityl oxide, ascribed in the last instance to noncoplanarity interfering with resonance. It seems more likely, however, that in these cases the first ionization potential refers to 7r-electrons and higher values for the lone-pair electrons (as yet undetermined) might remove the anomalies. [Pg.55]

These effects of electron withdrawal from and release to the ring also find quantitative expression in the <7+ substituent constants (Brown and Okamoto, 1967), and linear correlations between cr+ values and ionization potentials have been reported (Crable and Kearns, 1962). More recently, the very strongly electrophilic reagent CF3 has been shown to attack the benzene ring at a rate, k, determined by an activation energy linearly related to the ionization potential of the benzene electrons in... [Pg.58]

The oxidation of alkenes by nitrous oxide on silver at 350°C has been studied from the viewpoint of structure effects on rate by Belousov, Mulik, and Rubanik (J40), and very good correlations of Type B have been found with ionization potentials and with the rate of oxidation by atomic oxygen (series 110 and 111). [Pg.186]

Ru" (0)(N40)]"+ oxidizes a variety of organic substrates such as alcohols, alkenes, THE, and saturated hydrocarbons. " In all cases [Ru (0)(N40)] " is reduced to [Ru (N40)(0H2)] ". The C— H deuterium isotope effects for the oxidation of cyclohexane, tetrahydrofuran, 2-propanol, and benzyl alcohol are 5.3, 6.0, 5.3, and 5.9 respectively, indicating the importance of C— H cleavage in the transitions state. For the oxidation of alcohols, a linear correlation is observed between log(rate constant) and the ionization potential of the alcohols. [Ru (0)(N40)] is also able to function as an electrocatalyst for the oxidation of alcohols. Using rotating disk voltammetry, the rate constant for the oxidation of benzyl alcohol by [Ru (0)(N40)] is found to be The Ru electrocatalyst remains active when immobilized inside Nafion films. [Pg.805]


See other pages where Ionization potentials correlation effects is mentioned: [Pg.173]    [Pg.1008]    [Pg.170]    [Pg.29]    [Pg.519]    [Pg.133]    [Pg.267]    [Pg.189]    [Pg.149]    [Pg.336]    [Pg.642]    [Pg.56]    [Pg.132]    [Pg.155]    [Pg.595]    [Pg.389]    [Pg.192]    [Pg.238]    [Pg.35]    [Pg.48]    [Pg.16]    [Pg.123]    [Pg.217]    [Pg.79]    [Pg.161]    [Pg.166]    [Pg.169]    [Pg.161]    [Pg.166]    [Pg.169]    [Pg.240]   
See also in sourсe #XX -- [ Pg.16 , Pg.161 , Pg.164 , Pg.166 , Pg.171 ]




SEARCH



Correlation potential

Effective ionization potential

Ionization effective

Ionization effects

Ionization potential

© 2024 chempedia.info