Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iodides palladium complexes

Acetyl chlotide is reduced by vatious organometaUic compounds, eg, LiAlH (18). / fZ-Butyl alcohol lessens the activity of LiAlH to form lithium tti-/-butoxyalumium hydtide [17476-04-9] C22H2gA102Li, which can convert acetyl chlotide to acetaldehyde [75-07-0] (19). Triphenyl tin hydtide also reduces acetyl chlotide (20). Acetyl chlotide in the presence of Pt(II) or Rh(I) complexes, can cleave tetrahydrofuran [109-99-9] C HgO, to form chlorobutyl acetate [13398-04-4] in about 72% yield (21). Although catalytic hydrogenation of acetyl chlotide in the Rosenmund reaction is not very satisfactory, it is catalyticaHy possible to reduce acetic anhydride to ethylidene diacetate [542-10-9] in the presence of acetyl chlotide over palladium complexes (22). Rhodium trichloride, methyl iodide, and ttiphenylphosphine combine into a complex that is active in reducing acetyl chlotide (23). [Pg.81]

Seven procedures descnbe preparation of important synthesis intermediates A two-step procedure gives 2-(HYDROXYMETHYL)ALLYLTRIMETH-YLSILANE, a versatile bifunctional reagent As the acetate, it can be converted to a tnmethylenemethane-palladium complex (in situ) which undergoes [3 -(- 2] annulation reactions with electron-deficient alkenes A preparation of halide-free METHYLLITHIUM is included because the presence of lithium halide in the reagent sometimes complicates the analysis and use of methyllithium Commercial samples invariably contain a full molar equivalent of bromide or iodide AZLLENE IS a fundamental compound in organic chemistry, the preparation... [Pg.224]

Allylation of perfluoroalkyl halides with allylsilanes is catalyzed by iron or ruthenium carbonyl complexes [77S] (equation 119) Alkenyl-, allyl-, and alkynyl-stannanes react with perfluoroalkyl iodides 111 the presence ot a palladium complex to give alkenes and alkynes bearing perfluoroalkyl groups [139] (equation 120)... [Pg.478]

It was found [99JCS(PI )3713] that, in all cases, the formation of the deiodinated products 38 and 39 was accompanied by formation of the diynes 40 which were isolated in 60-90% yield. The authors believed that the mechanism of deiodination may be represented as an interaction ofbis(triphenylphosphine)phenylethynyl-palladium(II) hydride with the 4-iodopyrazole, giving rise to the bisftriphenylphos-phine)phenylethynyl palladium(II) iodide complex which, due to the reductive elimination of 1 -iodoalkyne and subsequent addition of alk-1 -yne, converts into the initial palladium complex. Furthermore, the interaction of 1-iodoalkynes with the initial alkyne in the presence of Cul and EtsN (the Cadiot-Chodkiewicz reaction) results in the formation of the observed disubstituted butadiynes 40 (Scheme 51). [Pg.27]

The original Sonogashira reaction uses copper(l) iodide as a co-catalyst, which converts the alkyne in situ into a copper acetylide. In a subsequent transmeta-lation reaction, the copper is replaced by the palladium complex. The reaction mechanism, with respect to the catalytic cycle, largely corresponds to the Heck reaction.Besides the usual aryl and vinyl halides, i.e. bromides and iodides, trifluoromethanesulfonates (triflates) may be employed. The Sonogashira reaction is well-suited for the synthesis of unsymmetrical bis-2xy ethynes, e.g. 23, which can be prepared as outlined in the following scheme, in a one-pot reaction by applying the so-called sila-Sonogashira reaction ... [Pg.158]

Organotins. The organotin reagents have much lower nucleophilicity than that of the Grignard reagents, thus allowing the use of a variety of functionalized monomers for the polymerization. Aryl-alkenyl iodides, bromides and tosylates have been used as substrates. Palladium complexes are commonly employed as catalysts for the reaction. Because the catalysts can be destroyed... [Pg.484]

Palladium complexes also catalyze the carbonylation of halides. Aryl (see 13-13), vinylic, benzylic, and allylic halides (especially iodides) can be converted to carboxylic esters with CO, an alcohol or alkoxide, and a palladium complex. Similar reactivity was reported with vinyl triflates. Use of an amine instead of the alcohol or alkoxide leads to an amide. Reaction with an amine, AJBN, CO, and a tetraalkyltin catalyst also leads to an amide. Similar reaction with an alcohol, under Xe irradiation, leads to the ester. Benzylic and allylic halides were converted to carboxylic acids electrocatalytically, with CO and a cobalt imine complex. Vinylic halides were similarly converted with CO and nickel cyanide, under phase-transfer conditions. ... [Pg.565]

Substantially more work has been done on reactions of square-planar nickel, palladium, and platinum alkyl and aryl complexes with isocyanides. A communication by Otsuka et al. (108) described the initial work in this area. These workers carried out oxidative addition reactions with Ni(CNBu )4 and with [Pd(CNBu )2] (. In a reaction of the latter compound with methyl iodide the complex, Pd(CNBu )2(CH3)I, stable as a solid but unstable in solution, was obtained. This complex when dissolved in toluene proceeds through an intermediate believed to be dimeric, which then reacts with an additional ligand L (CNBu or PPh3) to give PdL(CNBu )- C(CH3)=NBu I [Eq. (7)]. [Pg.31]

A palladium catalyst with a less electron-rich ligand, 2,2-dipyridyl-methylamine-based palladium complexes (4.2), is effective for coupling of aryl iodides or bromides with terminal alkynes in the presence of pyrrolidine and tetrabutylammonium acetate (TBAB) at 100°C in water.37 However, the reactions were shown to be faster in NMP solvent than in water under the reaction conditions. Palladium-phosphinous acid (POPd) was also reported as an effective catalyst for the Sonogashira cross-coupling reaction of aryl alkynes with aryl iodides, bromides, or chlorides in water (Eq. 4.18).38... [Pg.109]

With the exception of intramolecular amination reactions, all of the early aryl halide aminations were catalyzed by palladium complexes containing the sterically hindered P(o-tol)3. In papers published back-to-back in 1996, amination chemistry catalyzed by palladium complexes of DPPF and BINAP was reported.36,37 These catalysts allowed for the coupling of aryl bromides and iodides with primary alkyl amines, cyclic secondary amines, and anilines. [Pg.372]

Nickel and palladium complexes catalyze the conversion of alkyl iodides to alkylzinc iodides 30 with added diethylzinc (Scheme 28).74 Thus, for example, 1-iodooctane was converted at room temperature to n-octylzinc iodide after treatment with 2 equiv. of diethylzinc in the presence of 1.5 mol% of a palladium bis(phosphine) complex. [Pg.330]

When Knochel and his co-workers attempted to use [PdC CF CN ] and related palladium(n) complexes as catalysts in the reactions of dialkylzincs with alkyl iodides, they observed the formation of the halogen-zinc exchange405 or cyclization406 products only. A recent paper of Zhou and Fu demonstrated that palladium complexes can also be used in the coupling reactions of alkylzinc bromides with alkyl iodides, bromides, chlorides, and... [Pg.407]

Although several Lewis Acids were evaluated, including titanium(lV) chloride, aluminum(lll) chloride and tin(lV) chloride, ferric(lll) chloride proved to be the most effective co-catalyst. We believe that in the presence of a Lewis Acid, the rate of j3-palladium hydride elimination (H-Pd-X) from the -allyl carbomethoxy palladium complex 4 can be enhanced. A good leaving group such as iodide attached to -allyl carbomethoxy palladium complex 4 would facilitate iodopalladium hydride elimination to selectively form methyl, -pentadienoate (Equation 11.). [Pg.88]

Unactivated aryl iodides undergo the conversion Arl — ArCHj when treated with tris(diethylamino)sulfonium difluorotrimethylsilicate and a palladium catalyst.131 A number of methods, all catalyzed by palladium complexes, have been used to prepare unsymmetrical biaryls (see also 3-16). In these methods, aryl bromides or iodides are coupled with aryl Grignard reagents,152 with arylboronic acids ArB(OH)2,153 with aryltin compounds Ar-SnR3,154 and with arylmercury compounds.155 Unsymmetrical binaphthyls were synthesized by photochemically stimulated reaction of naphthyl iodides with naphthoxide ions in an SrnI reaction.156 Grignard reagents also couple with aryl halides without a palladium catalyst, by the benzyne mechanism.157 OS VI, 916 65, 108 66, 67. [Pg.662]

Polystyrene-bound secondary aliphatic amines and /V-alkyl amino acids can be ally-lated by treatment with a diene and an aryl iodide or bromide in the presence of palla-dium(II) acetate (Entry 14, Table 10.3). As the diene, 1,3-, 1,4-, and 1,5-dienes can be used, and, besides aryl halides, heteroaryl bromides have also been successfully used [63], This remarkable reaction is likely to proceed via the formation of an aryl palladium complex, with subsequent insertion of an alkene into the C-Pd bond. The resulting organopalladium compound does not undergo ( -elimination (as in the Heck reaction), but isomerizes to an allyl palladium complex, which reacts with the amine to give the observed allyl amines. [Pg.268]

Vinylations and arylations of polystyrene-bound 2-bromofurans have been accomplished by treatment with stannanes [98] or boronic acids [99] in the presence of palladium complexes. Alternatively, 2-furylstannanes can be coupled with support-bound aryl iodides or bromides in the presence of palladium or copper complexes (Entries 5-7, Table 15.8). [Pg.401]

Access to the 1,3-benzazepinone 39 has been achieved from aryl iodide 38 with a Pd(0) catalyst, followed by cyclization of the intermediate palladium complex upon reaction with thallium acetate, thus providing a convenient approach to the fused seven-membered ring system (Equation 5) <1998ICA(270)123>. [Pg.249]


See other pages where Iodides palladium complexes is mentioned: [Pg.136]    [Pg.584]    [Pg.540]    [Pg.545]    [Pg.563]    [Pg.566]    [Pg.870]    [Pg.56]    [Pg.455]    [Pg.358]    [Pg.380]    [Pg.388]    [Pg.389]    [Pg.390]    [Pg.157]    [Pg.231]    [Pg.438]    [Pg.439]    [Pg.560]    [Pg.158]    [Pg.90]    [Pg.141]    [Pg.144]    [Pg.26]    [Pg.454]    [Pg.460]    [Pg.484]    [Pg.664]    [Pg.124]    [Pg.327]   
See also in sourсe #XX -- [ Pg.835 ]

See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.4 ]




SEARCH



1- - -iodide complex with palladium dichloride

Aryl iodides, oxidative addition palladium complexes

Benzyl iodide palladium complexes

Complexes iodide

© 2024 chempedia.info