Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermolecular reactions alkyl halides

Examples of the intermolecular C-P bond formation by means of radical phosphonation and phosphination have been achieved by reaction of aryl halides with trialkyl phosphites and chlorodiphenylphosphine, respectively, in the presence of (TMSlsSiH under standard radical conditions. The phosphonation reaction (Reaction 71) worked well either under UV irradiation at room temperature or in refluxing toluene. The radical phosphina-tion (Reaction 72) required pyridine in boiling benzene for 20 h. Phosphinated products were handled as phosphine sulfides. Scheme 15 shows the reaction mechanism for the phosphination procedure that involves in situ formation of tetraphenylbiphosphine. This approach has also been extended to the phosphination of alkyl halides and sequential radical cyclization/phosphination reaction. ... [Pg.152]

This has been applied to the cyclization of dihalides [45, 46], nonconjugated, unsaturated ketones [47] and esters [48], oxoalkylpyridinium salts [49], aldehydes and unsaturated nitriles [50], halides, and unsaturated esters [51], The umpoled acceptors, mostly radical anions or carban-ions (see Scheme 1), can also be used in intermolecular reactions such as acylation, alkylation, or carboxylation (Eq. 5). [Pg.80]

Intermolecular reactions of hydroxylamines with secondary alkyl halides and mesylates proceed slower than with alkyl triflates and may not provide sufficiently good yield and/or stereoselectivity. A nseful alternative for these reactions is application of more reactive anions of 0-alkylhydroxamic acids or 0-alkoxysulfonamides ° like 12 (equation 8) as nucleophiles. The resulting Af,0-disubstituted hydroxamic acids or their sulfamide analogs of type 13 can be readily hydrolyzed to the corresponding hydroxylamines. The same strategy is also helpful for synthesis of hydroxylamines from sterically hindered triflates and from chiral alcohols (e.g. 14) through a Mitsunobu reaction (equation 9). [Pg.121]

The intermolecular alkylation of metallo nitronates with various alkyl halides is limited. The addition of methyl iodide to the silver salt of an aryl nitro-methane provides the corresponding methyl nitronate in moderate yield (Eq. 2.13) (150), which has also been extended to the silver salt of trinitromethane (Scheme 2.16) (151-153). However, in the case of primary halides, both O- and C-alkylation are observed. For secondary and tertiary halides, only O-alkylation is observed, but in low yields. Unfortunately, under the reaction conditions, the starting alkyl halide can undergo dehydrohalogenation to provide the corresponding alkene, which then undergoes [3+2] cycloaddition with the alkyl nitronate. [Pg.131]

Alkyl halides with (3-hydrogens generally undergo only elimination reactions under the conditions of the vinyl substitution (100 C in the presence of an amine or other base). Exceptions are known only in cases where intramolecular reactions are favorable. Even alkyl halides without (3-hydrogens appear not to participate in the intermolecular alkene substitution since no examples have been reported, with the exception of reactions with benzyl chloride and perfluoroalkyl iodides. [Pg.842]

As stated above, intermolecular coupling reactions between carbon atoms are of limited use. In the classical Wurtz reaction two identical primary alkyl iodide molecules are reduced by sodium. n-Hectane (C100H202), for example, has been made by this method in 60% yield (G. Stallberg, 1956). The unsymmetrical coupling of two alkyl halides can be achieved via dialkylcuprates. The first halide, which may have a branched carbon chain, is lithiated and allowed to react with copper(I) salts. The resulting dialkylcuprate can then be coupled with alkyl or aryl iodides or bromides. Although the reaction probably involves radicals it is quite stereoselective and leads to inversion of chiral halides. For example, lithium diphenyl-cuprate reacts with (R)-2-bromobutane with 90% stereoselectivity to form (S)-2-phenylbutane (G.M. Whitesides, 1969). [Pg.36]

Sterically demanding amines have a high tendency to induce -elimination when treated with alkyl halides. Their alkylation is, however, feasible with reactive alkylating agents, and even 2,2,6,6-tetramethylpiperidines have been N-alkylated (Scheme 6.5). Secondary tritylamines, however, cannot usually be alkylated or acy-lated intermolecularly (last reaction, Scheme 6.4), but examples of intramolecular alkylations have been reported [27]. [Pg.233]

The ability of Sml2 to reduce alkyl halides has been exploited in a number of carbon carbon bond-forming reactions. Radicals generated from the reduction of alkyl halides can be trapped by alkenes in cyclisation reactions to form carbocyclic and heterocyclic rings (see Chapter 5, Section 5.3), and the alkyl-samarium intermediates can be used in intermolecular and intramolecular Barbier and Grignard reactions (see Chapter 5, Section 5.4). The reduction of ot-halocarbonyl compounds with Sml2 gives rise to Sm(III) enolates that can be exploited in Reformatsky reactions (Chapter 5, Section 5.5) and are discussed in Section 4.5. [Pg.38]

Molander has also studied the Sml2-mediated double Barbier additions of alkyl dihalides to ketoesters.22,23 These impressive anionic-anionic, inter-molecular-intramolecular sequences require the use of Nil2 as an additive and irradiation with visible light and allow access to a range of bicyclic and tricyclic systems. The reactions proceed by reduction of the more reactive alkyl halide, intermolecular Barbier addition to the ketone, lactonisation and a second Barbier addition to the lactone carbonyl (Scheme 6.18).22... [Pg.154]

We said that the formation of cyclopropanes by addition of substituted carbenes to alkenes was rare—in fact, alkyl-substituted carbenes undergo very few intermolecular reactions at all because they decompose very rapidly. When primary alkyl halides are treated with base, alkenes are formed by elimination. Having read Chapter 19, you should expect the mechanism of this elimination to be E2 and, if you started with a deuterated compound like this, the alkene product would be labelled with two deuterium atoms at its terminus. [Pg.1069]

The procedure provides a good example of a high-yield intramolecular Wurtz reaction. Intermolecular Wurtz reactions normally do not give high yields of coupled products and are accompanied by formation of alkenes and alkanes corresponding to the alkyl halide.In contrast, intramolecular reactions of... [Pg.58]

Lewis superacid-catalyzed direct alkylation of alkanes is also possible with alkyl cations prepared from alkyl halides and SbFs in sulfuryl chloride fluoride solution. " Typical alkylation reactions are those of propane and butanes by 2-butyl and ZerZ-butyl cations. The ClfU-Sbfs and C2H5F-SbF5 complexes acting as incipient methyl and ethyl cations besides alkylation preferentially cause hydride transfer. Since intermolecular hydride transfer between different carbocations and alkanes are faster than alkylation, a complex mixture of alkylated products is usually formed. A significant amount of 2,3-dimethylbutane was, however, detected when propane was propylated with the 2-propyl cation at low temperature [Eq. (6.36)]. No 2,2-dimethylbutane, the main product of conventional acid-catalyzed alkylation, was detected, which is a clear indication of predominantly nonisomerizing reaction conditions. [Pg.323]

Driven by the inability to substitute allyltin compounds at the 3-position, Keck examined intermolecular addition reactions of allyl sulfides [50]. He was able to show that 3-methyl- and 3,3-dimethyl-substituted allyl phenyl sulfides 86 and 88 undergo reaction with alkyl halides and alkyl phenyl selenides in the presence of hexabutylditin to form good yields of the allylation products (Scheme 18). These... [Pg.62]

If the two halogens are on the same or adjacent carbons, two consecutive E2 dehydrohalogenations can result in the formation of a triple bond. The Williamson ether synthesis involves the reaction of an alkyl halide with an alkoxide ion. If the two functional groups of a bifunctional molecule can react with each other, both intermolecular and intramolecular reactions can occur. The reaction that is more likely to occur depends on the concentration of the bifunctional molecule and the size of the ring that will be formed in the intramolecular reaction. [Pg.433]


See other pages where Intermolecular reactions alkyl halides is mentioned: [Pg.38]    [Pg.299]    [Pg.1023]    [Pg.71]    [Pg.65]    [Pg.119]    [Pg.223]    [Pg.259]    [Pg.259]    [Pg.71]    [Pg.61]    [Pg.111]    [Pg.111]    [Pg.151]    [Pg.736]    [Pg.70]    [Pg.259]    [Pg.188]    [Pg.334]    [Pg.498]    [Pg.335]    [Pg.38]    [Pg.37]    [Pg.14]    [Pg.736]    [Pg.142]    [Pg.194]    [Pg.563]   


SEARCH



Alkyl halides reactions

Alkyl halides, alkylation reactions

© 2024 chempedia.info