Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interaction viscoelasticity—turbulence

Reynolds numbers from 10,000 to 25,000, at which strong evidence exists that under certain conditions, a viscoelastic fluid thread can interact with turbulence eddies and reduce the overall flow friction in the pipe... [Pg.168]

Figure 13 plots an example of the processed PIV frame. The turbulent velocity field and its boundaries, solid wall, and liquid-free surface are simultaneously shown in Figure 13. The turbulence structures such as the coherent vortical structure near the bottom wall and its modification after release from the no-slip boundary condition near the free surface of the open-channel flow, and the evolvement of the free-surface wave can be seen in Figure 13. This simultaneous measurement technique for free-surface level and velocity field of the liquid phase using PIV has been successfully applied to the investigation of wave-turbulence interaction of a low-speed plane liquid wall-jet flow (Li et al., 2005d), and the characteristics of a swirling flow of viscoelastic fluid with deformed free surface in a cylindrical container driven by the constantly rotating bottom wall (Li et al., 2006c). Figure 13 plots an example of the processed PIV frame. The turbulent velocity field and its boundaries, solid wall, and liquid-free surface are simultaneously shown in Figure 13. The turbulence structures such as the coherent vortical structure near the bottom wall and its modification after release from the no-slip boundary condition near the free surface of the open-channel flow, and the evolvement of the free-surface wave can be seen in Figure 13. This simultaneous measurement technique for free-surface level and velocity field of the liquid phase using PIV has been successfully applied to the investigation of wave-turbulence interaction of a low-speed plane liquid wall-jet flow (Li et al., 2005d), and the characteristics of a swirling flow of viscoelastic fluid with deformed free surface in a cylindrical container driven by the constantly rotating bottom wall (Li et al., 2006c).
Because of the interaction of the two complicated and not well-understood fields, turbulent flow and non-Newtonian fluids, understanding of DR mechanism(s) is still quite limited. Cates and coworkers (for example, Refs. " ) and a number of other investigators have done theoretical studies of the dynamics of self-assemblies of worm-like micelles. Because these so-called living polymers are subject to reversible scission and recombination, their relaxation behavior differs from reptating polymer chains. An additional form of stress relaxation is provided by continuous breaking and repair of the micellar chains. Thus, stress relaxation in micellar networks occurs through a combination of reptation and breaking. For rapid scission kinetics, linear viscoelastic (Maxwell) behavior is predicted and is observed for some surfactant systems at low frequencies. In many cationic surfactant systems, however, the observed behavior in Cole-Cole plots does not fit the Maxwell model. [Pg.779]


See other pages where Interaction viscoelasticity—turbulence is mentioned: [Pg.186]    [Pg.93]    [Pg.94]    [Pg.2252]    [Pg.437]    [Pg.10]    [Pg.28]    [Pg.176]    [Pg.266]   
See also in sourсe #XX -- [ Pg.10 , Pg.28 ]




SEARCH



Viscoelastic turbulent

© 2024 chempedia.info