Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interaction potential bonds

The feature that distinguishes intemrolecular interaction potentials from intramolecular ones is their relative strengtii. Most typical single bonds have a dissociation energy in the 150-500 kJ mol range but the strengdi of the interactions between small molecules, as characterized by the well depth, is in the 1-25 kJ mor range. [Pg.185]

The interaction potential (R) describes both bonding and non-bon ding in teraction s. Th e bon dm g interactions arc u snally form u -lated as a strain energy that is zero at some ideal configuration of the atoms and describe how the energy increases as the ideal con-figu ration is deform ed. Don d in g in teraction s ii su ally refer to atom s in the following relationships ... [Pg.174]

In the case of computer simulations of fluids with directional associative forces a less intuitive but computationally more convenient potential model has been used [14,16,106]. According to that model the attraction sites a and j3 on two different particles form a bond if the centers of reacting particles are within a given cut-off radius a and if the orientations of two spheres are constrained as follows i < 6 i and [tt - 2 < The interaction potential is... [Pg.194]

For a given large molecule, there are very many more non-bonded interactions than bonded ones. Molecular-mechanics force fields often truncate the non-bonded interactions at some finite distance, in order to save on computer resource. A number of ingenious algorithms have been proposed in order to ensure the continuity of the potential at the cut-off point. [Pg.43]

This dissociation is in effect an extension of the diameter d2 of the second coordination sphere and the subsequent decrease in the intrinsic interaction potential of the outer sphere. Therewith, the inter-spherical interaction potential between the central atom and the first coordination sphere increases, leading to shortening of the distance di, which in turn leads to an increase in the frequency of the Ta-F bond vibration. [Pg.177]

Computer simulations therefore have several inter-related objectives. In the long term one would hope that molecular level simulations of structure and bonding in liquid crystal systems would become sufficiently predictive so as to remove the need for costly and time-consuming synthesis of many compounds in order to optimise certain properties. In this way, predictive simulations would become a routine tool in the design of new materials. Predictive, in this sense, refers to calculations without reference to experimental results. Such calculations are said to be from first principles or ab initio. As a step toward this goal, simulations of properties at the molecular level can be used to parametrise interaction potentials for use in the study of phase behaviour and condensed phase properties such as elastic constants, viscosities, molecular diffusion and reorientational motion with maximum specificity to real systems. Another role of ab initio computer simulation lies in its interaction... [Pg.4]

The main handicap of MD is the knowledge of the function [/( ). There are some systems where reliable approximations to the true (7( r, ) are available. This is, for example, the case of ionic oxides. (7( rJ) is in such a case made of coulombic (pairwise) interactions and short-range terms. A second example is a closed-shell molecular system. In this case the interaction potentials are separated into intraatomic and interatomic parts. A third type of physical system for which suitable approaches to [/( r, ) exist are the transition metals and their alloys. To this class of models belong the glue model and the embedded atom method. Systems where chemical bonds of molecules are broken or created are much more difficult to describe, since the only way to get a proper description of a reaction all the way between reactant and products would be to solve the quantum-mechanical problem at each step of the reaction. [Pg.663]

The QM/MM interactions (Eqm/mm) are taken to include bonded and non-bonded interactions. For the non-bonded interactions, the subsystems interact with each other through Lennard-Jones and point charge interaction potentials. When the electronic structure is determined for the QM subsystem, the charges in the MM subsystem are included as a collection of fixed point charges in an effective Hamiltonian, which describes the QM subsystem. That is, in the calculation of the QM subsystem we determine the contributions from the QM subsystem (Eqm) and the electrostatic contributions from the interaction between the QM and MM subsystems as explained by Zhang et al. [13],... [Pg.60]

Fig. 1 a Model bead-spring chain interacting through bond potential Dj, bond angle potential Uq, and van der Waals potential C7v(jw> and b the form of the bond angle potential Ug... [Pg.40]

The focus of this chapter is on an intermediate class of models, a picture of which is shown in Fig. 1. The polymer molecule is a string of beads that interact via simple site-site interaction potentials. The simplest model is the freely jointed hard-sphere chain model where each molecule consists of a pearl necklace of tangent hard spheres of diameter a. There are no additional bending or torsional potentials. The next level of complexity is when a stiffness is introduced that is a function of the bond angle. In the semiflexible chain model, each molecule consists of a string of hard spheres with an additional bending potential, EB = kBTe( 1 + cos 0), where kB is Boltzmann s constant, T is... [Pg.92]

One tool for working toward this objective is molecular mechanics. In this approach, the bonds in a molecule are treated as classical objects, with continuous interaction potentials (sometimes called force fields) that can be developed empirically or calculated by quantum theory. This is a powerful method that allows the application of predictive theory to much larger systems if sufficiently accurate and robust force fields can be developed. Predicting the structures of proteins and polymers is an important objective, but at present this often requires prohibitively large calculations. Molecular mechanics with classical interaction potentials has been the principal tool in the development of molecular models of polymer dynamics. The ability to model isolated polymer molecules (in dilute solution) is well developed, but fundamental molecular mechanics models of dense systems of entangled polymers remains an important goal. [Pg.76]

M. Quack, J. Stohner, and M. A. Suhm, Analytical three body interaction potentials and hydrogen bond dynamics of hydrogen fluoride aggregates (HF)n, n>3.J. Mol. Struct. 599, 381 425 (2001). [Pg.45]

Other nucleophile-electrophile pairs for which the pm-disubstituted naphthalene system has been used to monitor potential bonding interactions are illustrated in [35] and [36], The methoxynitrile [35], for example, shows the same sort of evidence for a bonding interaction, marked by a 7° distortion from linearity at the nitrile carbon, in plane, and exactly away from the methoxyl oxygen (Procter et al., 1981) so also does the bipyridyl dinitrile [37] (Baxter et al., 1991). In the unique case of the 8-diazonium quinoline-N-oxide [36] the proximity of a formally negatively charged oxygen induces a distortion from linearity of 10.4° in the diazonium group (Wallis and Dunitz, 1984). [Pg.117]

Water Potentials. The ST2 (23), MCY (24), and CF (2J5) potentials are computationally tractable and accurate models for two-body water-water interaction potentials. The ST2, MCY and CF models have five, four, and three interaction sites and have four, three and three charge centers, respectively. Neither the ST2 nor the MCY potentials allow OH or HH distances to vary, whereas bond lengths are flexible with the CF model. While both the ST2 and CF potentials are empirical models, the MCY potential is derived from ab initio configuration interaction molecular orbital methods (24) using many geometrical arrangements of water dimers. The MCY+CC+DC water-water potential (28) is a recent modification of the MCY potential which allows four body interactions to be evaluated. In comparison to the two-body potentials described above, the MCY+CC+DC potential requires a supercomputer or array processor in order to be computationally feasible. Therefore, the ST2, MCY and CF potentials are generally more economical to use than the MCY+CC+DC potential. [Pg.24]

The alternate approach to developing interaction potentials is to consider the solid surface as a very large molecule. One can then apply theoretical techniques based on gas-phase reaction ideas. The simulation of real systems, however, often requires that both reactive adsorbed atoms as well as a large number of substrate atoms be explicitly treated, and so these techniques rapidly become computationally infeasible. It is apparent that to simulate the general situation, bonding ideas from both regimes should be used. This breakdown does, however, provide a useful format within which to discuss intermediate-range interaction potentials, and so it will be used to illustrate potentials which are in current use in simulations of gas-surface interactions. [Pg.289]


See other pages where Interaction potential bonds is mentioned: [Pg.194]    [Pg.243]    [Pg.174]    [Pg.325]    [Pg.368]    [Pg.640]    [Pg.756]    [Pg.25]    [Pg.179]    [Pg.17]    [Pg.19]    [Pg.243]    [Pg.14]    [Pg.172]    [Pg.177]    [Pg.50]    [Pg.467]    [Pg.200]    [Pg.365]    [Pg.92]    [Pg.121]    [Pg.891]    [Pg.160]    [Pg.199]    [Pg.260]    [Pg.203]    [Pg.50]    [Pg.313]    [Pg.224]    [Pg.33]    [Pg.548]    [Pg.156]    [Pg.213]    [Pg.369]    [Pg.121]   
See also in sourсe #XX -- [ Pg.236 ]




SEARCH



Bond interactions

Bond potential

Bonded interactions

Bonding interactions

Bonding potentials

© 2024 chempedia.info