Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intensification heat transfer

JACHUCK, R. J. J. and Ramshaw, C. Heat Recovery Systems CHP 14 (5) (1994) 475. Process intensification heat transfer characteristics of tailored rotating surfaces. [Pg.1136]

Methyl- and dimethylnaphthalenes are contained in coke-oven tar and in certain petroleum fractions in significant amounts. A typical high temperature coke-oven coal tar, for example, contains ca 3 wt % of combined methyl- and dimethylnaphthalenes (6). In the United States, separation of individual isomers is seldom attempted instead a methylnaphtha1 ene-rich fraction is produced for commercial purposes. Such mixtures are used for solvents for pesticides, sulfur, and various aromatic compounds. They also can be used as low freezing, stable heat-transfer fluids. Mixtures that are rich in monomethyinaphthalene content have been used as dye carriers (qv) for color intensification in the dyeing of synthetic fibers, eg, polyester. They also are used as the feedstock to make naphthalene in dealkylation processes. PhthaUc anhydride also can be made from m ethyl n aph th al en e mixtures by an oxidation process that is similar to that used for naphthalene. [Pg.487]

Substitution If intensification is not possible, then an alternative is to consider using a safer material in place of a hazardous one. Thus it may be possible to replace flammaole solvents, refrigerants, and heat-transfer media by nonflammable or less flammable (high-boiling) ones, hazardous products by safer ones, and processes which use hazardous raw materials or intermediates by processes which do not. As an example of the latter, the product manufactured at Bhopal (carbatyl) was made from three raw materials. Methyl isocyanate is formed as an intermediate. It is possible to react the same raw materials in a different order so that a different and less hazardous intermediate is formed. [Pg.2267]

Intensification of Heat Transfer in Chemical Reactors Heat Exchanger Reactors... [Pg.261]

I 72 Intensification of Heat Transfer in Chemical Reactors Heat Exchanger Reactors Table 12.5 Effusivity values according to the reactor material. [Pg.270]

In practice, the process regime will often be less transparent than suggested by Table 1.4. As an example, a process may neither be diffusion nor reaction-rate limited, rather some intermediate regime may prevail. In addition, solid heat transfer, entrance flow or axial dispersion effects, which were neglected in the present study, may be superposed. In the analysis presented here only the leading-order effects were taken into account. As a result, the dependence of the characteristic quantities listed in Table 1.5 on the channel diameter will be more complex. For a detailed study of such more complex scenarios, computational fluid dynamics, to be discussed in Section 2.3, offers powerful tools and methods. However, the present analysis serves the purpose to differentiate the potential inherent in decreasing the characteristic dimensions of process equipment and to identify some cornerstones to be considered when attempting process intensification via size reduction. [Pg.41]

Substantial heat-transfer intensification was also described for a special micro heat exchanger reactor [104]. By appropriate distribution of the gas-coolant stream, the axial temperature gradient can be decreased considerably, even under conditions corresponding to very large adiabatic temperature rises, e.g. of about 1400 °C. [Pg.58]

A detailed characterization of micro mixing and reaction performance (combined mixing and heat transfer) for various small-scale compact heat exchanger chemical reactors has been reported [27]. The superior performance, i.e. the process intensification, of these devices is evidenced and the devices themselves are benchmarked to each other. [Pg.58]

Microreactor and microprocess technology has, in some fine-chemical cases, approached commercial applications and become competitive with existing technology. Two main developments are awaited. Firstly, optimizing the process protocol conditions such that the chemistry is set to the limit of the reactor s capabilities in terms of mass and heat transfer. This so-called novel chemistry approach achieves the highest process intensification and can improve the costing of microprocess... [Pg.235]

In recent years, micro-structured reactors have attracted considerable attention for a variety of applications [61, 62]. Such micro devices are characterized by a laminar flow, and the very high surface-to-volume ratio they provide leads to increased mass and heat transfer, offering the potential for process intensification. [Pg.1541]

Heat transfer has been identified by Rlay 13 as an important area in which process intensification is expected to offer major benefits in terms of energy efficiency, pollution control and plant operating costs. So-called passive techniques including modifying the walls of a plant unit, for example, are routinely used to improve heat transfer coefficients in... [Pg.1113]


See other pages where Intensification heat transfer is mentioned: [Pg.339]    [Pg.261]    [Pg.263]    [Pg.268]    [Pg.289]    [Pg.300]    [Pg.323]    [Pg.390]    [Pg.31]    [Pg.256]    [Pg.35]    [Pg.36]    [Pg.360]    [Pg.1110]    [Pg.1111]    [Pg.1129]    [Pg.1132]    [Pg.240]    [Pg.366]    [Pg.1048]    [Pg.316]   


SEARCH



Heat intensification

Intensification

Intensification transfer

© 2024 chempedia.info