Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Insertion reactions metal hydride

The following discussion deals not only with this reaction, but related reactions in which a transition metal complex achieves the addition of carbon monoxide to an alkene or alkyne to yield carboxylic acids and their derivatives. These reactions take place either by the insertion of an alkene (or alkyne) into a metal-hydride bond (equation 1) or into a metal-carboxylate bond (equation 2) as the initial key step. Subsequent steps include carbonyl insertion reactions, metal-acyl hydrogenolysis or solvolysis and metal-carbon bond protonolysis. [Pg.913]

Facile isocyanide insertion reactions into metal-carbon, -nitrogen, -sulfur, -oxygen, - hydride, and - halide bonds have been found to readily occur. The insertion into metal-hydrides to give stable formimidines is particularly noteworthy since corresponding formyls (—CHO) are exceptionally difficult to synthesize and tend to be very unstable. There is a great deal of interest in carbon monoxide reductions, and the instability of the intermediate reduction products has made a study of the reduction process extremely difficult. Recently, however, the interaction of isocyanides with zirconium hydrides has allowed the isolation of the individual reduction steps of the isocyanide which has provided a model study for carbon monoxide reduction (39). [Pg.212]

Insertions of olefins into metal-carbon bonds are thought to occur by cis or 1,2-syn addition, as found for analogous insertions into metal-hydride bonds. Unfortunately, few well-documented examples exist among these are reactions (a)-(j) " . [Pg.653]

In analogy to hydroformylation, alkenes react with SO2 and H2 to give a so-called hydrosulftnation product, sulfinic acids [116]. Cationic Pd(II) and Pt(II) complexes bearing bidentate phosphine ligands are effective catalyst precursors. A plausible mechanism for the hydrosulfination involves formation of alkyl intermediates by olefin insertion into metal hydrides, subsequent insertion of SO2, and reformation of the hydrides with the release of sulfinic acids (Scheme 7.19). However, ahphatic sulfinic acids readily undergo disproportionation to give thiosulfinic acid esters, sulfonic acids, and water at the reaction temperature. The unstable sulfinic acids can be conveniently converted into y-oxo sulfones by addition of a,-unsaturated carbonyl compounds as Michael acceptors to the reaction mixtine (Eq. 7.23) [117]. [Pg.398]

The fact that both the thermal and the photochemical insertion reactions yield the same products via formation of charge-transfer complexes leads to the conclusion that the reactive ion-radical pair in equation (52) is the common intermediate for both activation processes. Such a conclusion is further verified by the direct observation of anion-radical intermediates from the thermal reaction of TCNE and DDQ with various metal hydrides.188... [Pg.252]

Tributyltin hydride reduction of carbonyl compounds. The reduction of carbonyl compounds with metal hydrides can also proceed via an electron-transfer activation in analogy to the metal hydride insertion into TCNE.188 Such a notion is further supported by the following observations (a) the reaction rates are enhanced by light as well as heat 189 (b) the rate of the reduction depends strongly on the reduction potentials of ketones. For example, trifluoroacetophenone ( re<1 = —1.38 V versus SCE) is quantitatively reduced by Bu3SnH in propionitrile within 5 min, whereas the reduction of cyclohexanone (Erea — 2.4 V versus SCE) to cyclohexanol (under identical... [Pg.252]

In view of the fact that early transition metal alkyls insert CO under very mild conditions (2, 5.) we chose to examine the reactions of electron-rich metal hydrides ( ) with the resultant dihapto acyl complexes. Such acyls obviously benefit from reduction of the CO bond order from three (in OO) to two. More significantly, the dihapto binding mode will significantly enhance the electrophilic character of the acyl carbon. [Pg.43]

The four hitherto known routes of the C-H insertion are shown in Scheme 1. In general, the insertion by singlet carbenes proceeds via route a in one step, whereas the reaction by triplet carbenes proceeds sequentially via route b, i.e., hydrogen abstraction followed by recombination of the radical pairs.4 Other stepwise mechanisms are hydride abstraction (route c) and proton abstraction (route d), both being followed by the recombination of ion pairs. However, extended study on routes c and d for synthetic purposes had not been done before we started, except for a few earlier studies on carbanion-promoted P C-H insertion reactions.5,6 Recent advances in transition metal-catalyzed... [Pg.288]

The formation of vinylboranes and vinylboronate esters during some metal-promoted hydroboration of alkenes has led to the suggestion of an alternative mechanistic pathway. Insertion of the alkene into the metal-boron bond occurs in preference to insertion into the metal-hydride bond.44,51,52 In a competing side-reaction to reductive elimination, f3-H elimination from the resulting borylalkyl intermediate furnishes the vinylborane byproduct.52 There remains however a substantial body of evidence, both experimental53 and theoretical,54 that supports the idea that transfer of hydride to the coordinated alkene precedes transfer of the boryl fragment. [Pg.842]

Many of these catalysts are derived from metal complexes which, initially, do not contain metal hydride bonds, but can give rise to intermediate MH2 (al-kene) species. These species, after migratory insertion of the hydride to the coordinated alkene and subsequent hydrogenolysis of the metal alkyl species, yield the saturated alkane. At first glance there are two possibilities to reach MH2 (alkene) intermediates which are related to the order of entry of the two reaction partners in the coordination sphere of the metal (Scheme 1.2). [Pg.8]

In transfer hydrogenation with 2-propanol, the chloride ion in a Wilkinson-type catalyst (18) is rapidly replaced by an alkoxide (Scheme 20.9). / -Elimination then yields the reactive 16-electron metal monohydride species (20). The ketone substrate (10) substitutes one of the ligands and coordinates to the catalytic center to give complex 21 upon which an insertion into the metal hydride bond takes place. The formed metal alkoxide (22) can undergo a ligand exchange with the hydride donor present in the reaction mixture, liberating the product (15). [Pg.590]

Insertion reactions of C02 into the metal-hydride and metal-alkyl bonds are of considerable importance, since these reactions are involved not only in the catalytic cycle of the hydrogenation of C02 into formic acid but also in the catalytic cycle of co-polymerization of C02 and epoxide. In this regard, insertions of C02 into various metal-hydride, metal-alkyl, and similar bonds have been the subject of intense experimental investigation. For instance, C02 insertions into Cu(I)-CH3, Cu(I)-OR, Cu(I)-alkyl [26-28], Ru(II)-H [29], Cr(0)-H, Mo(0)-H, W(0)-H [30], Ni(II)-H and Ni(II)-CH3 bonds [31, 32] have been so far reported. [Pg.85]

We recently investigated [40] the reason why C02 is inserted into the Rh(I)-H bond with a significantly lower barrier than into the Rh(III)-H bond, as shown in Table 2. As discussed above, charge-transfer from the metal-hydride moiety to the K orbital of CO2 is very important in the CO2 insertion reaction, and, at the same time, the metal-formate moiety is very much stabilized by the donation of electrons from the metal fragment. Since the Rh(I) center is more electron-rich than Rh(III), the charge-transfer from the Rh(I)-H moiety to the k orbital of C02 is favored, and the formate moiety is provided with sufficient electrons. Consequently, CO2 is more easily inserted into the Rh(I)-H bond than into the Rh(III)-H bond. [Pg.92]

Silicon hydrides can also oxidatively add to low-valent transition metal complexes forming a metal hydride silyl complex which can undergo subsequent insertion reactions. This elementary step forms the basis for the hydrosilylation process for alkenes and ketones. [Pg.39]

The alkene inserts either in the metal hydride bond or in the metal silyl bond. The latter reaction leads to alkenylsilyl side products and also alkane formation may occur. Similar reactions have been observed for hydroboration, the addition of R2BH to alkenes. (R2 may be the catechol dianion). [Pg.39]


See other pages where Insertion reactions metal hydride is mentioned: [Pg.41]    [Pg.151]    [Pg.145]    [Pg.83]    [Pg.131]    [Pg.52]    [Pg.41]    [Pg.84]    [Pg.145]    [Pg.127]    [Pg.390]    [Pg.683]    [Pg.132]    [Pg.36]    [Pg.206]    [Pg.178]    [Pg.278]    [Pg.294]    [Pg.20]    [Pg.6]    [Pg.384]    [Pg.230]    [Pg.29]    [Pg.180]    [Pg.225]    [Pg.123]    [Pg.280]    [Pg.306]    [Pg.11]    [Pg.498]    [Pg.24]    [Pg.79]    [Pg.157]   
See also in sourсe #XX -- [ Pg.24 , Pg.25 ]




SEARCH



Hydriding reaction

Insertion reactions

Ligand insertion reaction into metal hydride

Metal insertion

Metal insertion reactions

Metal inserts

Metal-hydride bond, ligand insertion reaction

Reactions hydrides

© 2024 chempedia.info