Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inosine diphosphate

Hypoxanthine Ribose Inosine Inosinic acid inosine monophosphate (IMP) Inosine diphosphate (IDP) Inosine triphosphate (ITP)... [Pg.268]

Imidazole, catalase and, 370 Infrared spectroscopy, cytochrome c oxidase and, 321, 322, 323 Inosine diphosphate, succinate dehydrogenase and, 247, 248... [Pg.446]

Glucose 6-phosphate Inorganic pyrophosphate Inosine diphosphate Guanosine diphosphate Uridine diphosphate... [Pg.104]

Human chorionic gonadotropin Hexose diphosphate Human menopausal gonadotropin Hexose monophosphate Interstitial cell-stimulating hormone Inosine diphosphate Inosine monophosphate Isonicotinic hydrazide Isoelectric point Inosine triphosphate a-Ketoglutaric acid (oxoglutarate)... [Pg.398]

Ann n Flavin adenine dinucleotide IDP Inosine diphosphate NADP fjjj.otinamide i enme dlnucleotide Pyridoxamine phosphate... [Pg.438]

Adenosine is formed from ATP via a phosphatase cascade that sequentially involves the diphosphate, ADP, and the monophosphate, AMP. The actions of adenosine are terminated by uptake and rephosphorylation via adenosine kinase to AMP or by cataboHsm via adenosine deaminase to inosine and hypoxanthine. [Pg.523]

Figure 12 Gradient separation of bases, nucleosides and nucleoside mono- and polyphosphates. Column 0.6 x 45 cm. Aminex A-14 (20 3 p) in the chloride form. Eluent 0.1 M 2-methyl-2-amino-l-propanol delivered in a gradient from pH 9.9-100 mM NaCl to pH 10.0-400 mM NaCl. Flow rate 100 ml/hr. Temperature 55°C. Detection UV at 254 nm. Abbreviations (Cyt) cytosine, (Cyd) cytidine, (Ado) adenosine, (Urd) uridine, (Thyd) thymidine, (Ura) uracil, (CMP) cytidine monophosphate, (Gua) guanine, (Guo) guanosine, (Xan) xanthine, (Hyp) hypoxanthine, (Ino) inosine, (Ade) adenosine, (UMP) uridine monophosphate, (CDP) cytidine diphosphate, (AMP) adenosine monophosphate, (GMP) guanosine monophosphate, (IMP) inosine monophosphate, (CTP) cytidine triphosphate, (ADP) adenosine diphosphate, (UDP) uridine monophosphate, (GDP) guanosine diphosphate, (UTP) uridine triphosphate, (ATP) adenosine triphosphate, (GTP), guanosine triphosphate. (Reproduced with permission of Elsevier Science from Floridi, A., Palmerini, C. A., and Fini, C., /. Chromatogr., 138, 203, 1977.)... Figure 12 Gradient separation of bases, nucleosides and nucleoside mono- and polyphosphates. Column 0.6 x 45 cm. Aminex A-14 (20 3 p) in the chloride form. Eluent 0.1 M 2-methyl-2-amino-l-propanol delivered in a gradient from pH 9.9-100 mM NaCl to pH 10.0-400 mM NaCl. Flow rate 100 ml/hr. Temperature 55°C. Detection UV at 254 nm. Abbreviations (Cyt) cytosine, (Cyd) cytidine, (Ado) adenosine, (Urd) uridine, (Thyd) thymidine, (Ura) uracil, (CMP) cytidine monophosphate, (Gua) guanine, (Guo) guanosine, (Xan) xanthine, (Hyp) hypoxanthine, (Ino) inosine, (Ade) adenosine, (UMP) uridine monophosphate, (CDP) cytidine diphosphate, (AMP) adenosine monophosphate, (GMP) guanosine monophosphate, (IMP) inosine monophosphate, (CTP) cytidine triphosphate, (ADP) adenosine diphosphate, (UDP) uridine monophosphate, (GDP) guanosine diphosphate, (UTP) uridine triphosphate, (ATP) adenosine triphosphate, (GTP), guanosine triphosphate. (Reproduced with permission of Elsevier Science from Floridi, A., Palmerini, C. A., and Fini, C., /. Chromatogr., 138, 203, 1977.)...
C10H12N4O8P- -2 Na+16 H20 Li 2 H20 (inosine 5 -phosphate), hexadecahydrate Lithium (5 -nicotinamido-D-ribosyl)-(5 -adenyl)diphosphate, NADLIH 38 527... [Pg.420]

Fig. 13.1 Pathways of thiopurine metabolism. The positions of two polymorphically expressed enzymes, TPMT (thiopurine methyl transferase) and ITPA (inosine triphosphate pyrophosphatase), are shown. HGPRT, hypoxanthine guanine phosphoribosyl transferase 6-TIDP, 6-thioi-nosine diphosphate 6-TIMP, 6-thioinosine monophosphate 6-TITP, 6-thio inosine trinophosphate... Fig. 13.1 Pathways of thiopurine metabolism. The positions of two polymorphically expressed enzymes, TPMT (thiopurine methyl transferase) and ITPA (inosine triphosphate pyrophosphatase), are shown. HGPRT, hypoxanthine guanine phosphoribosyl transferase 6-TIDP, 6-thioi-nosine diphosphate 6-TIMP, 6-thioinosine monophosphate 6-TITP, 6-thio inosine trinophosphate...
Fig. 14.1 Cellular pathway of methotrexate. ABCBl, ABCCl-4, ABC transporters ADA, adenosine deaminase ADP, adenosine diphosphate AICAR, aminoimidazole carboxamide ribonucleotide AMP, adenosine monophosphate ATIC, AICAR transformylase ATP, adenosine triphosphate SjlO-CH -THF, 5,10-methylene tetrahydrofolate 5-CHj-THF, 5-methyl tetrahydro-folate DHFR, dihydrofolate reductase dTMP, deoxythymidine monophosphate dUMP, deoxy-uridine monophosphate FAICAR, 10-formyl AICAR FH, dihydrofolate FPGS, folylpolyglutamyl synthase GGH, y-glutamyl hydrolase IMP, inosine monophosphate MTHFR, methylene tetrahydrofolate reductase MTR, methyl tetrahydrofolate reductase MTX-PG, methotrexate polyglutamate RFCl, reduced folate carrier 1 TYMS, thymidylate synthase. Italicized genes have been targets of pharmacogenetic analyses in studies published so far. (Reproduced from ref. 73 by permission of John Wiley and Sons Inc.)... Fig. 14.1 Cellular pathway of methotrexate. ABCBl, ABCCl-4, ABC transporters ADA, adenosine deaminase ADP, adenosine diphosphate AICAR, aminoimidazole carboxamide ribonucleotide AMP, adenosine monophosphate ATIC, AICAR transformylase ATP, adenosine triphosphate SjlO-CH -THF, 5,10-methylene tetrahydrofolate 5-CHj-THF, 5-methyl tetrahydro-folate DHFR, dihydrofolate reductase dTMP, deoxythymidine monophosphate dUMP, deoxy-uridine monophosphate FAICAR, 10-formyl AICAR FH, dihydrofolate FPGS, folylpolyglutamyl synthase GGH, y-glutamyl hydrolase IMP, inosine monophosphate MTHFR, methylene tetrahydrofolate reductase MTR, methyl tetrahydrofolate reductase MTX-PG, methotrexate polyglutamate RFCl, reduced folate carrier 1 TYMS, thymidylate synthase. Italicized genes have been targets of pharmacogenetic analyses in studies published so far. (Reproduced from ref. 73 by permission of John Wiley and Sons Inc.)...
This enzyme [EC 2.7.7.28], also known as NDP-hexose pyrophosphorylase, catalyzes the reaction of a nucleoside triphosphate with a hexose 1-phosphate to produce a NDP-hexose and pyrophosphate (or, diphosphate). In the reverse reaction the NDP-hexose can be, in decreasing order of activity, guanosine, inosine, and adenosine diphosphate hexoses in which the sugar is either glucose or mannose. [Pg.516]

Figure 1. Nucleotide degradation pathway (ATP=adenosine-5 -triphosphate, ADP=adenosine-5 -diphosphate, AMP=adenosine-5 -monophosphate, IMP=inosine-5 -monophosphate). Figure 1. Nucleotide degradation pathway (ATP=adenosine-5 -triphosphate, ADP=adenosine-5 -diphosphate, AMP=adenosine-5 -monophosphate, IMP=inosine-5 -monophosphate).
Didanosine is a synthetic purine nucleoside analog that inhibits the activity of reverse transcriptase in HIV-1, HIV-2, other retroviruses and zidovudine-resistant strains. A nucleobase carrier helps transport it into the cell where it needs to be phosphorylated by 5 -nucleoiidase and inosine 5 -monophosphate phosphotransferase to didanosine S -monophosphate. Adenylosuccinate synthetase and adenylosuccinate lyase then convert didanosine 5 -monophosphate to dideoxyadenosine S -monophosphate, followed by its conversion to diphosphate by adenylate kinase and phosphoribosyl pyrophosphate synthetase, which is then phosphorylated by creatine kinase and phosphoribosyl pyrophosphate synthetase to dideoxyadenosine S -triphosphate, the active reverse transcriptase inhibitor. Dideoxyadenosine triphosphate inhibits the activity of HIV reverse transcriptase by competing with the natural substrate, deoxyadenosine triphosphate, and its incorporation into viral DNA causes termination of viral DNA chain elongation. It is 10-100-fold less potent than zidovudine in its antiviral activity, but is more active than zidovudine in nondividing and quiescent cells. At clinically relevant doses, it is not toxic to hematopoietic precursor cells or lymphocytes, and the resistance to the drug results from site-directed mutagenesis at codons 65 and 74 of viral reverse transcriptase. [Pg.178]

Adenosine, in addition to serving as a substrate for the generation of cAMP plays a physiologic role as a platelet inhibitor and a vasodilator and may attenuate neutrophil-mediated damage to endothelial cells, Adenosine diphosphate (ADP)— a potent platelet agonist—is converted to adenosine, which is taken up rapidly by cells, especially erythrocytes and endothelial cells, A small proportion is metabolized to the aforementioned cyclic nucleotides. The remainder is broken down to inosine and subsequently to xanthine. Dipyridamole inhibits the active transport of adenosine into cells, but does not interfere with the passive diffusion. Since the platelet inhibitory effects of adenosine proceed via stimulation of adenylate cyclase, these effects can also be amplified by dipyridamole, In circulating blood, the largest amount of adenosine is found in red blood cells, This may, in part, help explain why dipyridamole is much more effective in whole blood than in plasma. [Pg.72]

Nucleoside Cyclic Pyrophosphates. Extensive work has been carried out by Matsuda et al. in their efforts to synthesise chemically stable cyclic adenosine diphosphate ribose (cADPR) analogues. The carbocyclic inosine analogue (83) was first prepared through an efficient cyclisation of an 8-bromo-A-1 -[5"-(phosphoryl)carbocyclic-ribosyl]inosine 5 -phenylthiophos-... [Pg.140]


See other pages where Inosine diphosphate is mentioned: [Pg.631]    [Pg.184]    [Pg.66]    [Pg.86]    [Pg.1153]    [Pg.6]    [Pg.81]    [Pg.91]    [Pg.307]    [Pg.321]    [Pg.1247]    [Pg.1280]    [Pg.70]    [Pg.105]    [Pg.1367]    [Pg.95]    [Pg.91]    [Pg.1350]    [Pg.105]    [Pg.1363]    [Pg.81]    [Pg.265]    [Pg.176]    [Pg.427]    [Pg.597]    [Pg.213]    [Pg.340]    [Pg.344]    [Pg.277]    [Pg.63]    [Pg.765]    [Pg.423]    [Pg.640]    [Pg.122]    [Pg.203]    [Pg.270]    [Pg.179]    [Pg.209]    [Pg.631]    [Pg.184]    [Pg.392]    [Pg.996]    [Pg.103]    [Pg.420]    [Pg.404]    [Pg.71]    [Pg.626]    [Pg.366]    [Pg.155]    [Pg.122]    [Pg.124]   


SEARCH



Inosin

Inosinate

© 2024 chempedia.info