Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inorganic supports catalysts

The resulting M°/CFP nanocomposites with M = Pd, Pt, Ag and Au exhibit in general satisfactory handiness in the laboratory atmosphere and chemical stability under operational conditions, re-usability, mechanical robustness (under proper conditions), plain filterability. Their reactivity is quite comparable to that of conventional M°/ S (S = carbon, inorganic support) catalysts. M°/CFP are to be employed in the liquid phase. [Pg.229]

Surface area is one of the most important factors in determining throughput (amount of reactant converted per unit time per unit mass of catalyst). Many modem inorganic supports have surface areas of 100 to >1000 m g The vast majority of this area is due to the presence of internal pores these pores may be of very narrow size distribution to allow specific molecular sized species to enter or leave, or of a much broader size distribution. Materials with an average pore size of less than 1.5-2 nm are termed microporous whilst those with pore sizes above this are called mesoporous materials. Materials with very large pore sizes (>50 nm) are said to be macroporous, (see Box 4.1 for methods of determining surface area and pore size). [Pg.88]

J. H. Clark and C.N. Rhodes, Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents , Royal Society of Chemistry, Cambridge, 2000. [Pg.129]

Industrial catalysts are usually composed of inorganic supports and metals on the supports. They are often prepared by heat treatment of metal ions on the support at high temperature sometimes under hydrogen. They have very complex structures. For example, they are the mixtures of metal particles with various sizes and shapes. Metal particles often strongly interact with the inorganic supports, thus resulting in the structure of half balls. [Pg.65]

Supported metal catalysts, M°/S, are typically two-components materials built up with a nanostructured metal component, in which the metal centre is in the zero oxidation state (M°), and with an inorganic support (S), quite various in its chemical and structural features [1], M° is the component typically deputed to the electronic activation of the reagents involved in the catalyzed reactions. S is typically a microstructured component mainly deputed to the physical support and to the dispersion of M° nanoclusters. [Pg.201]

Cyanide complexes have a venerable history (see CCC S )),1 and find utilization in many industrial processes including as synthetic catalysts e.g., Co cyanides on inorganic supports catalyze alkylene oxide polymerization,187 molecular magnetic materials, in electroplating, and in mining. Their pharmacology and toxicology is well explored... [Pg.19]

Since 1985, several thousands of publications have appeared on complexes that are active as catalysts in the addition of carbon monoxide in reactions such as carbonylation of alcohols, hydroformylation, isocyanate formation, polyketone formation, etc. It will therefore be impossible within the scope of this chapter to review all these reports. In many instances we will refer to recent review articles and discuss only the results of the last few years. Second, we will focus on those reports that have made use explicitly of coordination complexes, rather than in situ prepared catalysts. Work not containing identified complexes but related to publications discussing well-defined complexes is often mentioned by their reference only. Metal salts used as precursors on inorganic supports are often less well defined and most reports on these will not be mentioned. [Pg.142]

Recyclability can be achieved by heterogenization of the reaction mixture, by binding the catalyst and products to different phases. This can be achieved by (i) immobilization of the catalyst on a solid inorganic or polymeric support (solid-liquid protocols) or (ii) partitioning the catalyst and reagents/products in different liquid phases (liquid-liquid protocols) (see Chapter 9.9 for more details on supported catalysts). [Pg.357]

Most of the supports so far studied are conventional in the field of catalysis. Some new kinds of support have emerged including mesostructured materials,193 dendrimers, organic-inorganic hybrids, and natural polymers such as polysaccharides or polyaminoacids. Nevertheless, at the moment, supported catalysts still suffer from relatively poor stability when compared to classical heterogeneous catalysts, and from limited activity when compared to homogeneous catalysts. The driving force for this research is thus to make up some of these deficits. [Pg.467]

Apart from examples where the inorganic support merely acts as a catalyst, there are many instances where a solid-supported reagent can be used very effectively in... [Pg.58]

The first example of SILP-catalysis was the fixation of an acidic chloroaluminate ionic liquid on an inorganic support. The acidic anions of the ionic liquid, [AI2CI7] and [AI3CI10], react with free OH-groups of the surface to create an anionic solid surface with the ionic liquid cations attached [72]. The catalyst obtained was applied in the Friedel-Crafts acylation of aromatic compounds. Later, the immobilisation of acidic ionic liquids by covalent bonding of the ionic liquid cation to the surface was developed and applied again in Friedel-Crafts chemistry [73]. [Pg.203]

Hydrosilylation of butadiene using palladium complexes supported on inorganic materials such as silica and alumina has been carried out (77, 72) however, the supported catalyst is not stable and it is difficult to compare with the soluble catalysts. [Pg.164]

Other covalently bonded catalysts are those on inorganic supports such as silica, molecular sieves (zeolites), and alumina, the complexes being held either directly via the oxygen of surface hydroxy groups or via an intermediate functional group, again especially phosphino. [Pg.362]


See other pages where Inorganic supports catalysts is mentioned: [Pg.262]    [Pg.383]    [Pg.193]    [Pg.155]    [Pg.283]    [Pg.94]    [Pg.200]    [Pg.285]    [Pg.297]    [Pg.314]    [Pg.849]    [Pg.72]    [Pg.130]    [Pg.72]    [Pg.208]    [Pg.218]    [Pg.223]    [Pg.223]    [Pg.225]    [Pg.226]    [Pg.228]    [Pg.328]    [Pg.335]    [Pg.466]    [Pg.249]    [Pg.446]    [Pg.464]    [Pg.453]    [Pg.421]    [Pg.3]    [Pg.57]    [Pg.59]    [Pg.41]    [Pg.44]    [Pg.216]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Inorganic support

© 2024 chempedia.info