Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inner electron transfer

The most accepted modern activation theory for the outer electron transfer is that of Rudolph A. Marcus (Nobel Prize in Chemistry in 1992) [14], which is different from the transition state theory. His studies on unimolecular reactions and the transition and collision theories committed him to elaborate on the Rice-Ramsperger-Kassel-Marcus (RRKM) theory in 1952. This theory is an extension of the previous RRK theory proposed by Rice, Ramsperger, and Kassel between 1927 and 1928. Moreover, Hush and Marcus further extended the electron transfer theory of Marcus for inner electron transfers [15-17]. [Pg.45]

This diagram also shows the two main processes which occur in such a system. The first is the inner electron transfer and excitation from the K-shell of one of the partners via the rotational dynamic coupling (described below) to the L- shell of the other collision partner. The other possibility is the transfer of a L-electron to a higher shell via a molecular level which is coimected to levels in the vicinity of the continuum and thus ionizes. [Pg.275]

All these intermediates except for cytochrome c are membrane-associated (either in the mitochondrial inner membrane of eukaryotes or in the plasma membrane of prokaryotes). All three types of proteins involved in this chain— flavoproteins, cytochromes, and iron-sulfur proteins—possess electron-transferring prosthetic groups. [Pg.680]

The mitochondrial complex that carries out ATP synthesis is called ATP synthase or sometimes FjFo-ATPase (for the reverse reaction it catalyzes). ATP synthase was observed in early electron micrographs of submitochondrial particles (prepared by sonication of inner membrane preparations) as round, 8.5-nm-diameter projections or particles on the inner membrane (Figure 21.23). In micrographs of native mitochondria, the projections appear on the matrixfacing surface of the inner membrane. Mild agitation removes the particles from isolated membrane preparations, and the isolated spherical particles catalyze ATP hydrolysis, the reverse reaction of the ATP synthase. Stripped of these particles, the membranes can still carry out electron transfer but cannot synthesize ATP. In one of the first reconstitution experiments with membrane proteins, Efraim Racker showed that adding the particles back to stripped membranes restored electron transfer-dependent ATP synthesis. [Pg.694]

Inner-sphere. Here, the two reactants first form a bridged complex (precursor)- intramolecular electron transfer then yields the successor which in turn dissociates to give the products. The first demonstration of this was provided by H. Taube. He examined the oxidation of ICrfHoOijj by lCoCl(NHr)< and postulated that it occurs as follows ... [Pg.1124]

The complex cyanides of transition metals, especially the iron group, are very stable in aqueous solution. Their high co-ordination numbers mean the metal core of the complex is effectively shielded, and the metal-cyanide bonds, which share electrons with unfilled inner orbitals of the metal, may have a much more covalent character. Single electron transfer to the ferri-cyanide ion as a whole is easy (reducing it to ferrocyanide, with no alteration of co-ordination), but further reduction does not occur. [Pg.346]

The proposed model for the so-called sodium-potassium pump should be regarded as a first tentative attempt to stimulate the well-informed specialists in that field to investigate the details, i.e., the exact form of the sodium and potassium current-voltage curves at the inner and outer membrane surfaces to demonstrate the excitability (e.g. N, S or Z shaped) connected with changes in the conductance and ion fluxes with this model. To date, the latter is explained by the theory of Hodgkin and Huxley U1) which does not take into account the possibility of solid-state conduction and the fact that a fraction of Na+ in nerves is complexed as indicated by NMR-studies 124). As shown by Iljuschenko and Mirkin 106), the stationary-state approach also considers electron transfer reactions at semiconductors like those of ionselective membranes. It is hoped that this article may facilitate the translation of concepts from the domain of electrodes in corrosion research to membrane research. [Pg.240]

Kochi (1992) calls the electron transfer in the radical an inner-sphere transfer. [Pg.44]

On the basis of these results it seems to the present author that inner and outer complexes can reasonably be assumed for the electron transfer to the diazonium ion, but that an outer-sphere mechanism is more likely for metal complexes with a completely saturated coordination sphere of relatively high stability, such as Fe(CN) (Bagal et al., 1974) or ferrocene (Doyle et al., 1987 a). Romming and Waerstad (1965) isolated the complex obtained from a Sandmeyer reaction of benzenediazonium ions and [Cu B ]- ions. The X-ray structural data for this complex also indicate an outer-sphere complex. [Pg.197]

Role of the bridging ligand in inner-sphere electron transfer reactions. A. Haim, Acc. Chem. Res., 1975, 8, 264-272 (80). [Pg.53]

Ce4+ is a versatile one-electron oxidizing agent (E° = - 1.71 eV in HC10466 capable of oxidizing sulfoxides. Rao and coworkers66 have described the oxidation of dimethyl sulfoxide to dimethyl sulfone by Ce4+ cation in perchloric acid and proposed a SET mechanism. In the first step DMSO rapidly replaces a molecule of water in the coordination sphere of the metal (Ce v has a coordination number of 8). An intramolecular electron transfer leads to the production of a cation which is subsequently converted into sulfone by reaction with water. The formation of radicals was confirmed by polymerization of acrylonitrile added to the medium. We have written a plausible mechanism for the process (Scheme 8), but there is no compelling experimental data concerning the inner versus outer sphere character of the reaction between HzO and the radical cation of DMSO. [Pg.1061]

The second mechanism involves the formation of a covalent bridge through which the electron is passed in the electron transfer process. This is known as the inner-sphere mechanism (Fig. 9-5). [Pg.189]

Figure 9-5. The inner-sphere mechanism for an electron transfer reaction between two complexes. A covalently-linked intermediate is involved in this reaction. Figure 9-5. The inner-sphere mechanism for an electron transfer reaction between two complexes. A covalently-linked intermediate is involved in this reaction.
Finally, we consider the alternative mechanism for electron transfer reactions -the inner-sphere process in which a bridge is formed between the two metal centers. The J-electron configurations of the metal ions involved have a number of profound consequences for this reaction, both for the mechanism itself and for our investigation of the reaction. The key step involves the formation of a complex in which a ligand bridges the two metal centers involved in the redox process. For this to be a low energy process, at least one of the metal centers must be labile. [Pg.194]

The reduction ofsec-, and /-butyl bromide, of tnins-1,2-dibromocyclohexane and other vicinal dibromides by low oxidation state iron porphyrins has been used as a mechanistic probe for investigating specific details of electron transfer I .v. 5n2 mechanisms, redox catalysis v.v chemical catalysis and inner sphere v.v outer sphere electron transfer processes7 The reaction of reduced iron porphyrins with alkyl-containing supporting electrolytes used in electrochemistry has also been observed, in which the electrolyte (tetraalkyl ammonium ions) can act as the source of the R group in electrogenerated Fe(Por)R. ... [Pg.248]

As regards intimate mechanism, electron transfer reactions of metal complexes are of two basic types. These have become known as outer-sphere and inner-sphere (see Chapter 4, Volume 2). In principle, an outer-sphere process occurs with substitution-inert reactants whose coordination shells remain intact in... [Pg.153]

Classification exclusively in terms of a few basic mechanisms is the ideal approach, but in a comprehensive review of this kind, one is presented with all reactions, and not merely the well-documented (and well-behaved) ones which are readily denoted as inner- or outer-sphere electron transfer, hydrogen atom transfer from coordinated solvent, ligand transfer, concerted electron transfer, etc. Such an approach has been made on a more limited scale. Turney has considered reactions in terms of the charges and complexing of oxidant and reductant but this approach leaves a large number to be coped with under further categories. [Pg.274]

These present an interesting dichotomy in their reductions by tm(l,10-phen-anthroline)iron(ri) (ferroin) °. That of CIO2 to CIOJ is rapid, is first-order in each component ki = 1.86 0.13 l.mole sec at 35 °C) and is independent of acidity. Ferriin is the immediate product and an outer sphere electron-transfer is proposed. The reduction of CIO2 is much slower, proceeding at the same rate as dissociation of ferroin at high chlorite concentrations and a major product is feriin dimer, possibly [(phen)2Fe-0-Fe(phen)2] . Clearly the reaction depends on ligand-displacement followed by an inner-sphere electron transfer. [Pg.442]

Although Cu (aq) is a poor catalyst, it has been established that certain complexes of Cu(II) with a free ligand site can reduce H2O2, i.e. that the electron transfer is inner-sphere in character The rate law depends on the other ligands, e.g. [Pg.463]


See other pages where Inner electron transfer is mentioned: [Pg.181]    [Pg.191]    [Pg.145]    [Pg.3029]    [Pg.44]    [Pg.181]    [Pg.191]    [Pg.145]    [Pg.3029]    [Pg.44]    [Pg.291]    [Pg.2972]    [Pg.381]    [Pg.84]    [Pg.691]    [Pg.1123]    [Pg.323]    [Pg.922]    [Pg.487]    [Pg.595]    [Pg.26]    [Pg.193]    [Pg.197]    [Pg.103]    [Pg.267]    [Pg.190]    [Pg.194]    [Pg.113]    [Pg.121]    [Pg.73]    [Pg.77]    [Pg.21]    [Pg.168]    [Pg.154]    [Pg.176]    [Pg.198]   
See also in sourсe #XX -- [ Pg.11 , Pg.11 , Pg.141 , Pg.784 ]




SEARCH



Amines inner-sphere electron transfer

Electron transfer inner double layer

Electron transfer inner-sphere mechanism

Electron transfer reactions inner sphere mechanism

Electron transfer, activation control inner sphere

Electron transfer, between metal ions inner sphere

Electron-transfer processes inner-sphere mechanism

Heterogenous electron transfer inner sphere

Inner sphere electron transfer process

Inner-sphere electron transfer

Inner-sphere electron transfer oxidative addition

Inner-sphere electron transfer parameters

Inner-sphere electron transfer reactions

Inner-sphere electron transfer theory

Intramolecular electron transfer inner-sphere

Precursor complex inner-sphere electron transfer

Reactivity inner sphere electron transfer

Successor complex inner-sphere electron transfer

© 2024 chempedia.info