Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inlet performance

If the flow process is an isentropic change, the total pressure poa remains unchanged throughout the nozzle flow. However, the process of the generation of a shock wave in the divergent part increases the entropy and the total pressure becomes Pq2- It is evident that the inlet performance increases as po2 approaches Po. ... [Pg.486]

The irm mass spectrometer must be able to handle the resulting high pressures in the ion source region (10 mbar) while processing data from transient signals with precisions comparable to, or better than, dual-inlet performance. Differential pumping of the source and analyser regions enables the ion source of... [Pg.1084]

In describing reactor performance, selectivity is usually a more meaningful parameter than reactor yield. Reactor yield is based on the reactant fed to the reactor rather than on that which is consumed. Clearly, part of the reactant fed might be material that has been recycled rather than fresh feed. Because of this, reactor yield takes no account of the ability to separate and recycle unconverted raw materials. Reactor yield is only a meaningful parameter when it is not possible for one reason or another to recycle unconverted raw material to the reactor inlet. By constrast, the yield of the overall process is an extremely important parameter when describing the performance of the overall plant, as will be discussed later. [Pg.25]

In a gas flotation unit, air is bubbled through oily water to capture oil particles which then rise with the bubble to form a scum at the surface of the flotation unit. The scum can be removed by rotating paddles. Chemicals are often added to destabilise the inlet stream and enhance performance. [Pg.249]

A more sophisticated and increasingly popular method of on-condItion maintenance is to monitor the performance of equipment on-line. For example, a piece of rotating equipment such as a turbine may be monitored for vibration and mechanical performance (speed, inlet and outlet pressure, throughput). If a base-line performance is established, then deviations from this may indicate that the turbine has a mechanical problem which will reduce its performance or lead to failure. This would be used to alert the operators that some form of repair is required. [Pg.289]

The above example is a simple one, and it can be seen that the individual items form part of the chain in the production system, in which the items are dependent on each other. For example, the operating pressure and temperature of the separators will determine the inlet conditions for the export pump. System modelling may be performed to determine the impact of a change of conditions in one part of the process to the overall system performance. This involves linking together the mathematical simulation of the components, e.g. the reservoir simulation, tubing performance, process simulation, and pipeline behaviour programmes. In this way the dependencies can be modelled, and sensitivities can be performed as calculations prior to implementation. [Pg.342]

The Z-spray inlet causes ions and neutrals to follow different paths after they have been formed from the electrically charged spray produced from a narrow inlet tube. The ions can be drawn into a mass analyzer after most of the solvent has evaporated away. The inlet derives its name from the Z-shaped trajectory taken by the ions, which ensures that there is little buildup of products on the narrow skimmer entrance into the mass spectrometer analyzer region. Consequently, in contrast to a conventional electrospray source, the skimmer does not need to be cleaned frequently and the sensitivity and performance of the instrument remain constant for long periods of time. [Pg.69]

The choice of a particular mass spectrometer to perform a given task must take into account the nature of the substances to be examined, the degree of separation required for mixtures, the types of ion source and inlet systems, and the types of mass analyzer. Once these individual requirements have been defined, it is much easier to discriminate among the large number of instruments that are commercially available. Once suitable mass spectrometers have been identified, the final choice is often a case of balancing capital and running costs, reliability, ease of routine use, after-sales service, and the reputation of the manufacturer. [Pg.417]

Poor performance can result from fan inlet eccentric or spinning dow, and discharge ductwork that does not permit development of hiU fan pressure. Sometimes inlet restrictions starve a fan and limit performance. To obtain rated performance, the air must enter the fan uniformly over the inlet area without rotation or unusual turbulence. This allows all portions of the fan wheel to do equal work. If more air is distributed to one side of the wheel, such as with an elbow on the inlet, the work performed by the lightiy loaded portions of the wheel is reduced and capacity is decreased by 5—10%. The use of an inlet box duct on a fan can reduce capacity by as much as 25% unless there are turning vanes in the duct. Use of the vanes reduces the capacity loss to around 5%. [Pg.107]

Fig. 7. Control of fan performance with inlet vane control. SoHd lines marked A and N show normal performance without vanes (vanes wide open). As vanes are progressively closed, static and power curves are modified as indicated by dashed lines. Intersection ( - ) of the system resistance curve with these reduced pressure curves at points B, C, D, and E shows how imparting more spin to the inlet air reduces flow. Projecting points A to E vertically downward to the corresponding power curve locates fan power points A through E7 Power savings achieved over throttling control can be estimated by projecting points B through E vertically downward to the A power curve and comparing the value with that from the proper reduced power curve. To... Fig. 7. Control of fan performance with inlet vane control. SoHd lines marked A and N show normal performance without vanes (vanes wide open). As vanes are progressively closed, static and power curves are modified as indicated by dashed lines. Intersection ( - ) of the system resistance curve with these reduced pressure curves at points B, C, D, and E shows how imparting more spin to the inlet air reduces flow. Projecting points A to E vertically downward to the corresponding power curve locates fan power points A through E7 Power savings achieved over throttling control can be estimated by projecting points B through E vertically downward to the A power curve and comparing the value with that from the proper reduced power curve. To...
Fan Rating. Axial fans have the capabiUty to do work, ie, static pressure capabiUty, based on their diameter, tip speed, number of blades, and width of blades. A typical fan used in the petrochemical industry has four blades, operates neat 61 m/s tip speed, and can operate against 248.8 Pa (1 in. H2O). A typical performance curve is shown in Figure 11 where both total pressure and velocity pressure are shown, but not static pressure. However, total pressure minus velocity pressure equals static pressure. Velocity pressure is the work done just to collect the air in front of the fan inlet and propel it into the fan throat. No useflil work is done but work is expended. This is called a parasitic loss and must be accounted for when determining power requirements. Some manufacturers fan curves only show pressure capabiUty in terms of static pressure vs flow rate, ignoring the velocity pressure requirement. This can lead to grossly underestimating power requirements. [Pg.112]

Hydrothermal Synthesis Systems. Of the unit operations depicted in Figure 1, the pressurized sections from reactor inlet to pressure letdown ate key to hydrothermal process design. In consideration of scale-up of a hydrothermal process for high performance materials, several criteria must be considered. First, the mode of operation, which can be either continuous, semicontinuous, or batch, must be determined. Factors to consider ate the operating conditions, the manufacturing demand, the composition of the product mix (single or multiple products), the amount of waste that can be tolerated, and the materials of constmction requirements. Criteria for the selection of hydrothermal reactor design maybe summarized as... [Pg.501]

Essentially all of the methane [74-82-8] is removed ia the demethanizer overhead gas product. High recovery of ethane and heavier components as demethanizer bottoms products is commonplace. The work that is generated by expanding the gas ia the turboexpander is utilized to compress the residue gas from the demethanizer after it is warmed by heat exchange with the inlet gas. Recompression and deUvery to a natural gas pipeline is performed downstream of the plant. A propane recovery of 99% can be expected when ethane recoveries are ia excess of 65%. [Pg.183]

It is difficult to determine exactly the areas of localized pressure reductions inside the pump, although much research has been focused on this field. It is easy, however, to measure the total fluid pressure (static plus dynamic) at some convenient point, such as pump inlet flange, and adjust it in reference to the pump centerline location. By testing, it is possible to determine the point when the pump loses performance appreciably, such as 3% head drop, and to define the NPSH at that point, which is referred to as a required NPSH (NPSHR). The available NPSH (NPSHA) indicates how much suction head... [Pg.290]

Reactor Internals and Unit Hardware. Requirements for mixing feed components or separating products may determine minimum pilot unit size. If reactants caimot be premixed before they are passed into the reactor, the effectiveness of the inlet distributor in mixing the reactants can markedly affect reactor performance. This is especially tme for gases, multiple phases, or Hquid streams of greatly different kinematic viscosities. [Pg.519]

Low concentrations of oil can be removed by dissolved air flotation (DAF). In this process, an effluent recycle is pressurized in the presence of excess air, causing additional air to go into solution, in accordance with Henry s Law. When this water is discharged to the inlet chamber of the flotation unit at close to atmospheric pressure, the dissolved air comes out of solution in the form of tiny air bubbles which attach themselves to and become enmeshed in suspended solids and oil globules. The primary design criteria is the air/solids ratio, which is defined as the mass of air released divided by the mass of solids fed. Sufficient air must be released to capture the solids in the influent wastewater. The performance of DAF for the treatment of several... [Pg.181]


See other pages where Inlet performance is mentioned: [Pg.121]    [Pg.798]    [Pg.467]    [Pg.121]    [Pg.798]    [Pg.467]    [Pg.185]    [Pg.68]    [Pg.98]    [Pg.104]    [Pg.164]    [Pg.408]    [Pg.104]    [Pg.105]    [Pg.106]    [Pg.106]    [Pg.107]    [Pg.107]    [Pg.108]    [Pg.110]    [Pg.437]    [Pg.71]    [Pg.484]    [Pg.495]    [Pg.496]    [Pg.496]    [Pg.496]    [Pg.425]    [Pg.401]    [Pg.43]    [Pg.327]    [Pg.71]    [Pg.75]    [Pg.510]    [Pg.512]    [Pg.185]   
See also in sourсe #XX -- [ Pg.165 ]




SEARCH



Inlet

© 2024 chempedia.info