Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initiator calcium compounds

The reaction mechanism in the irradiated flue gas is probably quite complex, but basically the EB excites the gas molecules and promotes reactions that convert the oxides to acids. These then react with ammonia or calcium compounds to give solid products that are removed by the filter. The initiation reaction is believed to be brought about by radical formation, such as OH,... [Pg.376]

Various other observations of Krapcho and Bothner-By are accommodated by the radical-anion reduction mechanism. Thus, the position of the initial equilibrium [Eq. (3g)] would be expected to be determined by the reduction potential of the metal and the oxidation potential of the aromatic compound. In spite of small differences in their reduction potentials, lithium, sodium, potassium and calcium afford sufficiently high concentrations of the radical-anion so that all four metals can effect Birch reductions. The few compounds for which comparative data are available are reduced in nearly identical yields by the four metals. However, lithium ion can coordinate strongly with the radical-anion, unlike sodium and potassium ions, and consequently equilibrium (3g) for lithium is shifted considerably... [Pg.15]

Prepare 26 g. of molecular sodium in a 1500 ml. round-bottomed flask (Section II,50,d, Method 1). Cover the sodium with 625 ml. of sodium-dried A.R. benzene fit the flask with an efficient reflux condenser protected from the air by means of a calcium chloride (or cotton wool) guard tube. Add 151 5 g. of diethyl adipate (Sections 111,99 and 111,100) in one lot, followed by 1 6 ml. of absolute ethyl alcohol. Warm the flask on a water bath until, after a few minutes, a vigorous reaction sets in and a cake of the sodio compound commences to separate. Keep the flask well shaken by hand during the whole of the initial reaction. After the spontaneous reaction has subsided, reflux the mixture on a water bath overnight, and then cool in ice. Decompose the product with ice and dilute hydrochloric acid (1 1) add the acid until Congo red paper is turned blue. Separate the benzene layer, and extract the aqueous layer with 100 ml. of benzene. Wash the combined extracts with 100 ml. of 5 per cent, sodium carbonate solution and 160 ml. of water dry over a KWe anhydrous magnesium sulphate. Remove the benzene under atmospheric pressure (Fig. II, 13, 4, but with modified Claisen flask), and fractionate the residue under reduced pressure. Collect the 2-carbethoxy-epelopentanone at 108-111°/15 mm. (96 g.). Upon redistillation, the product boils at 102°/H mm. [Pg.857]

The modification of bentonite with alkylsilanes improves the dispersing properties [991]. Incorporation of phosphonate-type compounds in bentonites for drilling mud permits the blockage of free calcium ions in the form of soluble and stable complexes and the preservation or restoration of the initial fluidity of the mud [1222]. The phosphonates also have dispersing and fluidizing effects on the mud. [Pg.20]

The development of chromatography was first described by M. S. Tswett and is generally credited to him [26], He initially separated chlorophylls using a column of calcium carbonate and various solvents. His basic setup for chromatography was, and still is, a stationary phase and a mobile phase. As the mobile phase carries components of a mixture across the stationary phase, they are separated from each other and come out of the setup at different times [27], The term chromatography came about because the compounds initially... [Pg.28]

The development of azo pigment lakes was initiated by the discovery of Lithol Red by Julius (BASF) in 1899. Lithol Red, which is synthesized by an indirect diazotization procedure using 2-naphthylamine-l-sulfonic acid as a diazonium compound, was initially employed in the form of its calcium and barium salts, which were precipitated onto inorganic carrier materials. The pigment was used in its pure form after it became apparent that the carriers contribute very little to the application properties of the product. Lithol Red is one of the earliest colorant developed specifically for application as pigment. [Pg.314]

Catalytic forms of copper, mercury and silver acetylides, supported on alumina, carbon or silica and used for polymerisation of alkanes, are relatively stable [3], In contact with acetylene, silver and mercury salts will also give explosive acetylides, the mercury derivatives being complex [4], Many of the metal acetylides react violently with oxidants. Impact sensitivities of the dry copper derivatives of acetylene, buten-3-yne and l,3-hexadien-5-yne were determined as 2.4, 2.4 and 4.0 kg m, respectively. The copper derivative of a polyacetylene mixture generated by low-temperature polymerisation of acetylene detonated under 1.2 kg m impact. Sensitivities were much lower for the moist compounds [5], Explosive copper and silver derivatives give non-explosive complexes with trimethyl-, tributyl- or triphenyl-phosphine [6], Formation of silver acetylide on silver-containing solders needs higher acetylene and ammonia concentrations than for formation of copper acetylide. Acetylides are always formed on brass and copper or on silver-containing solders in an atmosphere of acetylene derived from calcium carbide (and which contains traces of phosphine). Silver acetylide is a more efficient explosion initiator than copper acetylide [7],... [Pg.222]

Removal of calcium from HRP C has a significant effect not only on enzyme activity and thermal stability, but also on the environment of the heme group. The calcium-depleted enzyme has optical, EPR, and H NMR spectra that are different from those of the native enzyme (211). Temperature dependence studies indicate that the heme iron exists as a thermal admixture of high- and low-spin states. Kinetic measurements at pH 7 show that ki, the rate constant for compound I formation, is only reduced marginally from 1.6 0.1 x 10 to 1.4 x lO M s , whereas k, the rate constant for compound II reduction, is reduced from 8.1 1.6 x 10 to 3.6 x lO M s (reducing substrate p-aminobenzoic acid), 44% of its initial value (211). There can be little doubt that this is the main reason for the loss of enzyme activity on calcium removal. [Pg.134]

Two renal responses are unique to the thiazide and thiazidehke diuretics. With these compounds, Na+ excretion is increased, while Ca++ excretion is decreased, primarily and directly because of increased distal Ca++ reabsorption, secondarily and indirectly because of a compensatory elevation of proximal solute absorption, making this class of diuretics useful in treating hypercal-ciuria. This effect, which may not be evident upon initial administration of the drug, is particularly benehcial in individuals who are prone to calcium stone formation. [Pg.246]


See other pages where Initiator calcium compounds is mentioned: [Pg.81]    [Pg.109]    [Pg.5339]    [Pg.487]    [Pg.170]    [Pg.5338]    [Pg.57]    [Pg.232]    [Pg.370]    [Pg.64]    [Pg.152]    [Pg.30]    [Pg.857]    [Pg.487]    [Pg.399]    [Pg.305]    [Pg.262]    [Pg.153]    [Pg.3]    [Pg.136]    [Pg.148]    [Pg.1668]    [Pg.253]    [Pg.311]    [Pg.382]    [Pg.496]    [Pg.359]    [Pg.298]    [Pg.667]    [Pg.883]    [Pg.884]    [Pg.885]    [Pg.300]    [Pg.476]    [Pg.280]    [Pg.197]    [Pg.96]    [Pg.97]    [Pg.1342]    [Pg.59]    [Pg.284]    [Pg.311]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



Calcium Initiators

Calcium compounds

Initial compounds

Initiation compounds

© 2024 chempedia.info