Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inhibition cuprous, cupric

Copper Corrosion Inhibitors. The most effective corrosion inhibitors for copper and its alloys are the aromatic triazoles, such as benzotriazole (BZT) and tolyltriazole (TTA). These compounds bond direcdy with cuprous oxide (CU2O) at the metal surface, forming a "chemisorbed" film. The plane of the triazole Hes parallel to the metal surface, thus each molecule covers a relatively large surface area. The exact mechanism of inhibition is unknown. Various studies indicate anodic inhibition, cathodic inhibition, or a combination of the two. Other studies indicate the formation of an insulating layer between the water surface and the metal surface. A recent study supports the idea of an electronic stabilization mechanism. The protective cuprous oxide layer is prevented from oxidizing to the nonprotective cupric oxide. This is an anodic mechanism. However, the triazole film exhibits some cathodic properties as well. [Pg.270]

In 1998, Schlotte et al. [259] showed that uric acid inhibited LDL oxidation. However, subsequent studies showed that in the case of copper-initiated LDL oxidation uric acid behaves itself as prooxidant [260,261]. It has been suggested that in this case uric acid enhances LDL oxidation by the reduction of cupric into cuprous ions and that the prooxidant effect of uric acid may be prevented by ascorbate. On the other hand, urate radicals formed during the interaction of uric acid with peroxyl radicals are able to react with other compounds, for example, flavonoids [262], and by that participate in the propagation of free radical damaging reactions. In addition to the inhibition of oxygen radical-mediated processes, uric acid is an effective scavenger of peroxynitrite [263]. [Pg.880]

Haltner and Oliver found that several metallic sulphides brought about an improvement in the load-carrying capacity when mixed with molybdenum disulphide. The sulphides included stannic and stannous sulphides, lead sulphide, ferrous suiphide and cuprous and cupric sulphides, and in a standard test procedure there was up to a ten-fold increase in load-carrying capacity. They speculated that the action of the added sulphides was similar to that of extreme-pressure additives in liquid lubricants. This would imply the formation of some protective film on the substrate surface. Pardee later suggested that the effective mechanism was more likely to be oxidation inhibition. An alternative would seem to be the possibility that certain sulphides can act as an additional source of sulphur to form sulphide on the substrate surface, and thus improve adhesion of the molybdenum disulphide, as discussed in the previous chapter. [Pg.104]

As already oudined, inhibition is essentially complete when caused by reagents that react with sulfhydryl groups (for example, p-chloro-mercuribenzoate, p-mercuribenzoate, o-iodosobenzoate, L-ascorbic acid silver, cupric, and mercuric ions iodine, and ferricyanide) this inactivation can be reversed to some extent by hydrogen sulfide and by cysteine. Lineweaver—Burk graphs have shown that the action of L-ascorbic acid is noncompetitive, and L-ascorbic acid acting in the presence of cupric ions probably causes formation of an inactive cuprous-enzyme. The action of p-chloromercuribenzoate on barley beta-amylase has been shown to be a competitive inhibition. In contrast, the soya-bean p-chloromercuribenzoate inhibition is noncompetitive, and the extent of inhibition is inversely related to the concentration of acetate ion. The latter exhibits a protective effect, and there... [Pg.336]

The mechanism of this eflFect is not known. Hill and Starcher (49) postulated that reduction of copper from its divalent (cupric) state to its monovalent (cuprous) state accounted for the impaired absorption of copper in the presence of ascorbic acid they produced the same effect with another reducing agent, dimercaptopropanol (BAL). This explanation has been accepted by others (56), although the oxidation state of copper for maximum intestinal absorption has not been established. An intramucosal competition of ascorbic acid for sulfhydryl sites on metallo-thioneins was demonstrated (57). If this ligand has any regulatory role in copper uptake, this alternative mechanism of ascorbic acid-copper interaction could explain the mechanism. Experimental confirmation of an ascorbic-acid-induced inhibition of copper absorption in the human intestine has not been presented. [Pg.560]

The action of AA on -SH groups has been mentioned above Avigliano et al. (1978) have shown that in the absence of air, AAO is fully reduced by four mol of AA as recorded by optical and EFR spectra. The inhibition of some enzymes is caused by reducing the valency of the metal ion i.e , in xantbine oxidase, inactivation is achieved by changing cupric to cuprous state However, the copper inactivation was reversible ... [Pg.284]


See other pages where Inhibition cuprous, cupric is mentioned: [Pg.891]    [Pg.892]    [Pg.209]    [Pg.179]    [Pg.417]    [Pg.273]    [Pg.33]    [Pg.521]    [Pg.522]    [Pg.531]    [Pg.305]    [Pg.45]    [Pg.350]    [Pg.113]    [Pg.323]    [Pg.132]   
See also in sourсe #XX -- [ Pg.135 ]




SEARCH



Cupric

Cuprous

© 2024 chempedia.info