Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy vibrational modes

It is important to appreciate that Raman shifts are, in theory, independent of the wavelength of the incident beam, and only depend on the nature of the sample, although other factors (such as the absorbance of the sample) might make some frequencies more useful than others in certain circumstances. For many materials, the Raman and infrared spectra can often contain the same information, but there are a significant number of cases, in which infrared inactive vibrational modes are important, where the Raman spectrum contains complementary information. One big advantage of Raman spectroscopy is that water is not Raman active, and is, therefore, transparent in Raman spectra (unlike in infrared spectroscopy, where water absorption often dominates the spectrum). This means that aqueous samples can be investigated by Raman spectroscopy. [Pg.85]

Computational simulations [68] suggest the possibility of identifying 7 8 infrared-active vibrational modes that depend on the chiral structure of CNTs. This was supported by experimental infrared spectroscopy [69] of SWCNTs, where features around 1598 and 874 cnT1 were found that could be linked to the calculated results. [Pg.13]

Key words IR spectroscopy, infrared, hydrogen, vibrational modes, H donors, O-H... [Pg.125]

Any species showing infrared active vibrational modes adsorbed on a reflecting surface can be studied with infrared spectroscopy. The beam of light will interact absorptively with the species when passing through the adsorbate layer before and after the point of reflection. This enables studies of all kinds of adsorbates on many surfaces. Of particular interest in electrochemistry are surfaces of metals and semiconductors employed as electrodes. Thus the following text deals only with reflection at these surfaces other surface and interfaces are not treated. Attempts to record infrared spectra of emersed electrodes (i.e. ex situ measurements) have been reported infrequently in studies of adsorption of hydroquinone and benzoquinone on a polycrystalline platinum electrode [174-177]. Further development of this approach has... [Pg.75]

Key words Infrared (IR) spectroscopy vibration modes qualitative and quantitative IR, remote sensing. [Pg.2]

The next most useful is vibrational spectroscopy but identification of large molecules is still uncertain. In the laboratory, vibrational spectroscopy in the infrared (IR) is used routinely to identify the functional groups in organic molecules but although this is important information it is not sufficient to identify the molecule. Even in the fingerprint region where the low wavenumber floppy vibrational modes of big molecules are observed, this is hardly diagnostic of structure. On occasion, however, when the vibrational transition can be resolved rotationally then the analysis of the spectrum becomes more certain. [Pg.60]

Infrared (IR) spectroscopy, especially when measured by means of the Fourier transform method (FTIR), is another powerful technique for the physical characterization of pharmaceutical solids [17]. In the IR method, the vibrational modes of a molecule are used to deduce structural information. When studied in the solid, these same vibrations normally are affected by the nature of the structural details of the analyte, thus yielding information useful to the formulation scientist. The FTIR spectra are often used to evaluate the type of polymorphism existing in a drug substance, and they can be very useful in studies of the water contained within a hydrate species. With modem instrumentation, it is straightforward to obtain FTIR spectra of micrometer-sized particles through the use of a microscope fitted with suitable optics. [Pg.7]

Infrared spectroscopy is an excellent tool in iminoborane chemistry, which readily permits, to distinguish between iminoboranes and nitrile-borane adducts and to identify monomeric and dimeric forms of iminoboranes. This event is due to the fact that the i>CN of CN multiple bonds absorbs outside the fingerprint region and can be considered to be a valuable group frequency even when mixed with other vibrational modes. In some cases other vibrations like NH, BH, B-halogen or B-S stretching modes are helpful for determining the structure of iminoboranes. [Pg.60]

Infrared spectroscopy (IR) measures vibrational modes involving changes in dipole moments. One may classify 0-0 moieties—superoxo versus peroxo— or identify v(M-O) and v(M-O-M) modes.35... [Pg.167]

The theory of electron-transfer reactions presented in Chapter 6 was mainly based on classical statistical mechanics. While this treatment is reasonable for the reorganization of the outer sphere, the inner-sphere modes must strictly be treated by quantum mechanics. It is well known from infrared spectroscopy that molecular vibrational modes possess a discrete energy spectrum, and that at room temperature the spacing of these levels is usually larger than the thermal energy kT. Therefore we will reconsider electron-transfer reactions from a quantum-mechanical viewpoint that was first advanced by Levich and Dogonadze [1]. In this course we will rederive several of, the results of Chapter 6, show under which conditions they are valid, and obtain generalizations that account for the quantum nature of the inner-sphere modes. By necessity this chapter contains more mathematics than the others, but the calculations axe not particularly difficult. Readers who are not interested in the mathematical details can turn to the summary presented in Section 6. [Pg.259]

Polymer films were produced by surface catalysis on clean Ni(100) and Ni(lll) single crystals in a standard UHV vacuum system H2.131. The surfaces were atomically clean as determined from low energy electron diffraction (LEED) and Auger electron spectroscopy (AES). Monomer was adsorbed on the nickel surfaces circa 150 K and reaction was induced by raising the temperature. Surface species were characterized by temperature programmed reaction (TPR), reflection infrared spectroscopy, and AES. Molecular orientations were inferred from the surface dipole selection rule of reflection infrared spectroscopy. The selection rule indicates that only molecular vibrations with a dynamic dipole normal to the surface will be infrared active [14.], thus for aromatic molecules the absence of a C=C stretch or a ring vibration mode indicates the ring must be parallel the surface. [Pg.84]


See other pages where Infrared spectroscopy vibrational modes is mentioned: [Pg.23]    [Pg.3]    [Pg.1780]    [Pg.269]    [Pg.315]    [Pg.319]    [Pg.421]    [Pg.429]    [Pg.444]    [Pg.446]    [Pg.140]    [Pg.300]    [Pg.742]    [Pg.209]    [Pg.404]    [Pg.449]    [Pg.199]    [Pg.334]    [Pg.294]    [Pg.9]    [Pg.88]    [Pg.136]    [Pg.136]    [Pg.478]    [Pg.509]    [Pg.204]    [Pg.67]    [Pg.16]    [Pg.67]    [Pg.68]    [Pg.137]    [Pg.270]    [Pg.84]    [Pg.344]    [Pg.114]    [Pg.125]    [Pg.118]    [Pg.76]    [Pg.84]   
See also in sourсe #XX -- [ Pg.473 ]




SEARCH



Infrared spectroscopy vibration modes

Vibration /vibrations spectroscopy

Vibrational infrared

Vibrational modes

Vibrational spectroscopy infrared

© 2024 chempedia.info