Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Industrial environments, magnesium alloys

Materials such as metals, alloys, steels and plastics form the theme of the fourth chapter. The behavior and use of cast irons, low alloy carbon steels and their application in atmospheric corrosion, fresh waters, seawater and soils are presented. This is followed by a discussion of stainless steels, martensitic steels and duplex steels and their behavior in various media. Aluminum and its alloys and their corrosion behavior in acids, fresh water, seawater, outdoor atmospheres and soils, copper and its alloys and their corrosion resistance in various media, nickel and its alloys and their corrosion behavior in various industrial environments, titanium and its alloys and their performance in various chemical environments, cobalt alloys and their applications, corrosion behavior of lead and its alloys, magnesium and its alloys together with their corrosion behavior, zinc and its alloys, along with their corrosion behavior, zirconium, its alloys and their corrosion behavior, tin and tin plate with their applications in atmospheric corrosion are discussed. The final part of the chapter concerns refractories and ceramics and polymeric materials and their application in various corrosive media. [Pg.582]

Hudson reported lives of about 4y years for 38 /tm thick metal-sprayed aluminium coatings on steel exposed at Sheffield, and more than 1 ly years for coatings 75/tm thick. Sprayed aluminium coatings (approximately 125/tm thick) have also provided complete protection against exfoliation and stress corrosion to aluminium-copper-magnesium (HE 15) and aluminium-zinc-magnesium (DTD 683) alloys in tests lasting up to 10 years in industrial and marine environments . [Pg.486]

Atmospheric corrosion rates will tend to increase with winds directly from the ocean to the site, the lower the elevation, and the closer the ocean is to the specimen as shown in Table 2. The direction and velocity of the wind can affect the accumulation of entrained seawater-related particles on specimen surfaces. Generally, the closer the site to the ocean in the face of a prevailing wind the greater the corrosion rate of metals and alloys. Magnesium and calcium chlorides are hydroscopic and tend to keep surfaces wet or moist. Sulfur dioxide lowers the critical humidity required to activate corrosion [fO] and increases the aggressiveness of the marine atmospheric environment such as found in an industrial marine environment versus a rural marine environment (Table 2). The dew-point temperature and the component/specimen temperature wiU influence the rate of corrosion. [Pg.363]

For more than a century, a number of different aluminum alloys have been commonly used in the aircraft industry These substrates mainly contain several alloying elements, such as copper, chromium, iron, nickel, cobalt, magnesium, manganese, silicon, titanium and zinc. It is known that these metals and alloys can be dissolved as oxides or other compounds in an aqueous medium due to the chemical or electrochemical reactions between their metal surfaces and the environment (solution). The rate of the dissolution from anode to cathode phases at the metal surfaces can be influenced by the electrical conductivity of electrolytic solutions. Thus, anodic and cathodic electron transfer reactions readily exist with bulk electrolytes in water and, hence, produce corrosive products and ions. It is known that pure water has poor electrical conductivity, which in turn lowers the corrosion rate of materials however, natural environmental solutions (e g. sea water, acid rains, emissions or pollutants, chemical products and industrial waste) are highly corrosive and the environment s temperature, humidity, UV light and pressure continuously vary depending on time and the type of process involved. ... [Pg.358]


See other pages where Industrial environments, magnesium alloys is mentioned: [Pg.782]    [Pg.402]    [Pg.404]    [Pg.540]    [Pg.353]    [Pg.689]    [Pg.457]    [Pg.31]    [Pg.513]    [Pg.329]    [Pg.279]    [Pg.541]    [Pg.64]    [Pg.40]    [Pg.119]   
See also in sourсe #XX -- [ Pg.136 ]




SEARCH



Alloying magnesium alloys

Environment industry

Magnesium alloys

© 2024 chempedia.info