Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peroxidation induction period

However, reaction 7 suffers other shortcomings, eg, entropy problems. Other proposals range from trace peroxidic contaminants to ionic mechanisms for generating peroxides (1) to cosmic rays (17). In any event, the initiating reactions are significant only during the induction period (18). [Pg.334]

Above about 250°C, the vapor-phase oxidation (VPO) of many organic substances becomes self-sustaining. Such oxidations are characterized by a lengthy induction period. During this period, peroxides accumulate until they can provide a source of new radicals to sustain a chain reaction. Once a critical threshold peroxide concentration is reached, the reaction accelerates very rapidly. [Pg.337]

Catalysts and Promoters. The function of catalysts in LPO is not weU understood. Perhaps they are not really catalysts in the classical sense because they do not necessarily speed up the reaction (25). They do seem to be able to alter relative rates and thereby affect product distributions, and they can shorten induction periods. The basic function in shortening induction periods appears to be the decomposition of peroxides to generate radicals (eq. 33). [Pg.342]

The photopolymerization of this monomer with a mercury arc89,9°) produces small yields of low molecular-weight products. In the presence of oxygen an induction period is noted and the polymers contain an appreciable amount of peroxide units in the chains9 ). The photolysis of 2-vinylfuran was briefly described by Hiraoka92 cyclopentadiene and CO were reported as products. It is not certain if free radicals are involved in this photodecomposition, but presumably they are. [Pg.70]

At the conclusion of the induction period due to oxygen, polymerization sets in at a rate exceeding that for pure monomer under the same conditions. The polymeric peroxides apparently furnish a source of free radicals. Oxygen therefore combines the roles of inhibitor, comonomer, and (indirectly) of initiator. [Pg.168]

As the alkene monomers can absorb oxygen from the air, forming peroxides (c/. p. 329) whose ready decomposition can effect autoinitiation of polymerisation, it is usual to add a small quantity of inhibitor, e.g. quinone, to stabilise the monomer during storage. When subsequent polymerisation is carried out, sufficient radical initiator must therefore be added to saturate the inhibitor before any polymerisation can be initiated an induction period is thus often observed. [Pg.321]

The data given below are typical of the polymerization of vinyl phenylbutyrate in dioxane solution in a batch reactor using benzoyl peroxide as an initiator. The reaction was carried out isothermally at 60 °C using an initial monomer concentration of 73 kg/m3. From the following data determine the order of the reaction and the reaction rate constant. Note that there is an induction period at the start of the reaction so that you may find it useful to use a lower limit other than zero in your integration over time. The reaction order may be assumed to be an integer. [Pg.66]

Biesenberg, J. S. etal., J. Polym. Eng. Sci., 1976,16, 101-116 Polymerisation of methyl methacrylate initiated by oxygen or peroxides proceeds with a steady increase in velocity during a variable induction period, at the end of which a violent 90°C exotherm occurs. This was attributed to an increase in chain branching, and not to a decrease in heat transfer arising from the increasing viscosity [ 1 ]. The parameters were determined in a batch reactor for thermal runaway polymerisation of methyl methacrylate, initiated by azoisobutyronitrile, dibenzoyl peroxide or di-ferf-butyl peroxide [2],... [Pg.627]

Though regarded as one of the more stable peroxides, it becomes shock-sensitive on heating, and self-accelerating decomposition sets in at 49° C [1]. One of the recently calculated values of 46 and 42°C for induction periods of 7 and 60 days, respectively, for critical ignition temperatures is closely similar to that (4577 days) previously recorded. Autocatalytic combustion of the polymerisation initiator is exhibited. Although not ordinarily shock sensitive, it responds to a detonator [2],... [Pg.1287]

A survey, with many references, of 14 classes of preparative reactions involving hydrogen peroxide or its derivatives emphasises safety aspects of the various procedures [11]. Following the decomposition of 100 1 of 50% aqueous hydrogen peroxide which damaged the 630 1 stainless vessel rated at 6 bar, the effect of added contaminants and variations in temperature and pH on the adiabatic decomposition was studied in a 1 1 pressure vessel, where a final temperature of 310°C and a pressure around 200 bar were attained. Rust had little effect, but addition of a little ammonia (pH increased from 1.8 to 6.0) caused the induction period to fall dramatically, effectively from infinity to a few h at 40°C and a few min at 80°C. Addition of sodium hydroxide to pH 7.5 reduced the induction period at 24°C from infinity to about 4 min [12],... [Pg.1625]

MRH Ammonia, 5.86/25, aniline 6.44/17, dimethylhydrazine 6.69/19 Ammonia dissolved in 99.6% peroxide gave an unstable solution which exploded violently [1]. In the absence of catalysts, cone, peroxide does not react immediately with hydrazine hydrate. This induction period has caused a number of explosions and accidents owing to sudden reaction of accumulated materials [2], 1,1-Dimethylhydrazine is hypergolic with high-test peroxide [3],... [Pg.1638]

It is seen that the decomposition of quinolide peroxides shortens the induction period. [Pg.496]

Ozone also reacts with ethane in the gas phase at room temperature. Rather than a direct molecular reaction, however, evidence points to the initiation of radical-chain reactions by the very small O-atom concentrations present in ozone at room temperature. Added oxygen scavenges the radicals and slows the build-up, leading to induction periods which may be in excess of 3 h. Recent advances in mechanistic investigations of gas-phase ozonolysis of alkanes have been reviewed. Oligomeric peroxides dominate the products of oxidation of nitrotoluenes with ozone in acetic acid. °... [Pg.233]

In a moderately alkaline medium, the ter Meer reaction proceeds through a considerable induction period the kinetic curves are S-shaped. Peroxide compounds and UV irradiation accelerate the process (Bazanov et al. 1978). Radical traps inhibit the reaction (as discussed earlier). This indicates the radical nature of the process. The rate of formation of active radical centers obeys the second-order equation in the total concentration of chloronitroethane introduced into the reaction. In nonionized substrate and anion conjugated with it, the reaction is a first-order one. The rate of the whole reaction is independent of the nitrite concentration. [Pg.245]

Results obtained in glass apparatus are summarized in Figure 1. The unsaturation falls off nearly linearly after a short induction period. After the hydroperoxide functional groups attain their maximum, the olefin disappearance decreases and becomes nonlinear as it is consumed by reaction to form polymeric dialkyl peroxide functions. The maximum concentration of polymeric dialkyl peroxide occurs well after the maximum alkenyl hydroperoxide concentration, giving the appearance of a sequential oxidation mechanism. Infrared and gas-liquid chromatographic analyses showed that hydroxylic derivatives, carbonyl derivatives, and lower molecular weight olefins continued to build up as by-products as the oxidation proceeded, as does the acidity titer. [Pg.100]

The inhibition of hydrocarbon autoxidation by zinc dialkyl dithiophosphates was first studied by Kennerly and Patterson (13) and later by Larson (14). In both cases the induction period preceding oxidation of a mineral oil at 155 °C. increased appreciably by adding a zinc dialkyl dithiophosphate. In particular, Larson (14) observed that zinc salts containing secondary alkyl groups were more efficient antioxidants than those containing primary groups. In these papers the inhibition mechanism was discussed only in terms of peroxide decomposition. [Pg.333]

We have carried out a limited study of the effect of metal dialkyl dithiophosphates on a hydroperoxide-autocatalyzed oxidation system. Table III summarizes induction periods for the oxidation of squalane at 140 °C. These results do not unambiguously reflect the peroxide-decomposing property of each dithiophosphate radical capture also occurs. [Pg.348]

Concentrated hydrogen peroxide does not react instantly with hydrazine hydrate, only after a certain induction period. This has been the cause of a number of explosions and accidents, produced by the accumulation of unchanged components and their sudden reaction after the induction period has elapsed. [Pg.308]

Sulfunes. A recent preparation of thietane 1,1-dioxide1 emphasizes the advantage of tungstic acid catalysis2 in the hydrogen peroxide oxidation of sulfides to sulfones an induction period is eliminated and the yield improved. [Pg.205]


See other pages where Peroxidation induction period is mentioned: [Pg.105]    [Pg.515]    [Pg.206]    [Pg.469]    [Pg.129]    [Pg.166]    [Pg.48]    [Pg.149]    [Pg.517]    [Pg.437]    [Pg.496]    [Pg.429]    [Pg.92]    [Pg.73]    [Pg.121]    [Pg.164]    [Pg.96]    [Pg.199]    [Pg.348]    [Pg.135]    [Pg.438]    [Pg.497]    [Pg.165]    [Pg.166]    [Pg.327]    [Pg.328]    [Pg.111]    [Pg.59]   
See also in sourсe #XX -- [ Pg.25 ]




SEARCH



Induction period

© 2024 chempedia.info