Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indolizidine ring formation

Radical cyclizations are often used in ring formations and are an effective methodology in the synthesis of piperidines. The intramolecular cyclization of an oxime ether, such as 63 onto an aldehyde or ketone gives a new entry into cyclic amino alcohols <99JOC2003, 99H(51)2711>. Similarly, reaction of a terminal acetylene with BujSnH generates a vinyl radical, which will cyclize with an imine moiety to give 3-methylenepiperidine <99TL1515>. The indolizidine alkaloid ipalbidine was prepared by a sulfur-controlled 6-exo-selective radical cyclization of an a/p/ia-phenylthio amide <99H(50)31>. [Pg.252]

Trost and Scanlan reported a Pd-catalyzed condensation of a vinyl epoxide 75 and an allyl sulfone 76 in the presence of dppf under neutral conditions [231]. This alkylation allows a room temperature entry to a basic indolizidine ring system as a step towards the synthesis of (+)-aj//o-Pumiliotoxin 339B [232], The modification of allylic alkylations by condensation of a diene 77 with a pronucleophile 78 also leads to C-C bond formation at the allylic position in both 1 1 (79 and 80) and 2 1 (81 and 82) products [233]. Reactions between ketene silyl acetals 83 with allyl... [Pg.76]

The utility of lOOC reactions in the synthesis of fused rings containing a bridgehead N atom such as pyrrolizidines, indolizidines, and quinolizidines which occur widely in a number of alkaloids has been demonstrated [64]. Substrates 242 a-d, that possess properly positioned aldoxime and alkene functions, were prepared from proline or pipecolinic acid 240 (Eq. 27). Esterification of 240 and introduction of unsaturation on N by AT-alkylation produced 241 which was followed by conversion of the carbethoxy function to an aldoxime 242. lOOC reaction of 242 led to stereoselective formation of various tricyclic systems 243. This versatile method thus allows attachment of various unsaturated side chains that can serve for generation of functionalized five- or six-membered (possibly even larger) rings. [Pg.35]

Reactions where the reduction of a functionalized nitrogen, or the deprotection of an amine group, start a domino process with the sequential formation of the two rings of the indolizidine system, find many examples in the literature. A recent one is provided by the synthesis of (—)-indolizidine 223AB <20040L1493> (Scheme 10). [Pg.373]

The a is L-lysine, as in the case of piperidine, but the f3 is different. The /3 is a-aminoadipic acid 6-semialdehyde. The q> is L-pipecolic acid, which is synthesized in plants from piperideine-6-carboxylic acid. In the case of many other organisms, the obligatory intermedia (q>) is derived from the /3. The

ring structure. The indolizidine nucleus will be formed only in the synthesis of the x- The deep structmal change occms when

Claisen reaction with acetyl or malonyl CoA (Cra/mCoA) and the ring closme process (by amide or imine) to 1-indolizidinone, which is the x- The second obligatory intermedia ( k ) only has the indolizidine nucleus. [Pg.97]

The formation of spirocyclopropanes from the reaction of diazodiphenylmethane and ( )-8-phenylmenthyl esters of acrylic acid and methyl fumarate occurred with a modest level of diastereofacial selectivity (136). In contrast, diastereoselectivities of 90 10 were achieved in the cycloadditions of diazo(trimethylsilyl)methane with acrylamides 65 derived from camphor sultam as the chiral auxiliary (137) (Scheme 8.16). Interestingly, the initial cycloadducts 66 afforded the nonconjugated A -pyrazolines 67 on protodesilylation the latter were converted into optically active azaproline derivatives 68. In a related manner, acrylamide 69 was converted into A -pyrazolines 70a,b (138). The major diastereoisomer 70a was used to synthesize indolizidine 71. The key step in this synthesis involves the hydrogenolytic cleavage of the pyrazoline ring. [Pg.554]

The preparation of fused nitrogen heterocycles such as pyrrolizidines, indolizidines, quinolizidines, pyrrolidinoazocines and piperidinoazocines by the RCM of appropriate dienes (equation 38), is another case where presence of a ring assists the RCM reaction. However, when n = 7 (with x = 1), the C=C bonds, separated by 11 single bonds, are too far apart for RCM to occur. Applications of this general strategy are in prospect for the formation of fused nitrogen heterocyclic systems in problems of alkaloid synthesis240. [Pg.1527]

A selective amide cleavage of proline-tethered azetidin-2-one 329 with sodium methoxide followed by cyclization of the resulting /3-amino ester resulted into formation of the ring-expanded indolizidine derivative 330 (Equation 115) <2005JOC8890>. [Pg.49]

The formation of thiocarbonyl ylids by the reaction of metallocarbenoids with thiocarbonyl compounds has not been extensively studied, as noted by Padwa and Weingarten in a review [167]. However, formation of rings by interaction of these compounds has recently received some attention. A key step in the synthesis of a polyhydroxylated indolizidine alkaloid related to castanospermine is the reaction of diazoketone with a thioamide, in the presence of rhodium acetate [135]. After desulfurisation an enaminone was obtained. [Pg.148]

Thermal intramolecular cycloaddition reactions of unsaturated nitrones 1341 derived from a series of N- 2-alkenyl)-2-pyrrolecarbaldehydes 1340 and benzylhydroxylamine lead to competitive formation of two kinds of intramolecular cycloadducts, namely the fused- and the bridged-ring regioisomers 1342 and 1343, respectively (Scheme 255) <2001T8323>. Further elaboration of compounds 1342 and 1343 has given pyrrolizidine and indolizidine derivatives, respectively. A similar regiochemical trend was observed when aldehydes 1340 were reacted with (/ )-a-methylbenzylhydroxylamine in order to synthesize optically active compounds. [Pg.230]

The cascade sequence was also used to synthesize indolizidine, pyrrolizidine, and quinolizidine structures. Thus, heating oximes 52 at 180 °C in a sealed tube provided cycloadducts 53 or 54 in 60-76% yields (equation (1)) (89TL2289). Each of the products were isolated as single diastereomers. When five-membered rings were obtained from the cycloaddition, cis-anti isomers (i.e. 53a,b) were formed, whereas formation of a six-membered ring led only to the cis-syn isomer (i.e. 54a,b). [Pg.9]

Intramolecular tandem Michael addition-amide formation in the intermediate (291) afforded an epilupinine precursor (Scheme 60) <89H(29)1209>. Another quinolizidine synthesis forming two a bonds in its key step is the reductive double alkylation of azido epoxides with an (o leaving group (292). This strategy has been applied to the synthesis of ring-expanded analogues of indolizidine alkaloids (e.g. (293)) from D-arabinose (Scheme 61) <93TL822l>. [Pg.551]

Alternatively, the formation of five-, six- and seven-membered rings, such as indoline, quinoline, indolizidine and benzazepine derivatives obtained with [(SIPr)2Ni] by intramolecular amination of appropriated chloro-aromatic amines (Equation (10.7))." ... [Pg.291]

In contrast to the previous examples, the preferred formation of linear aldehydes was the main target in some syntheses to construct a cyclic derivative with an appropriate ring size in the next step or for simply elongating a carbon chain. The linear aldehydes are the proper intermediates for the synthesis of indolizidine alkaloids [11], the tricyclic marine alkaloid lepadiformine [12], ACE inhibitors such as MDL 27210 and its analogues [13,14], and bryostatin, a remarkably potent anticancer agent [15]. Rhodium complexes of bisphosphite ligands provide one of the best known classes of linear-selective hydroformylation catalysts for simple ot-olefins. Except for the lepadiformine intermediate, where hydroformylation was carried out in the presence of the Rh(acac)(CO)2/P(OPh)3 catalyst system, in other... [Pg.302]


See other pages where Indolizidine ring formation is mentioned: [Pg.524]    [Pg.1018]    [Pg.630]    [Pg.222]    [Pg.90]    [Pg.329]    [Pg.374]    [Pg.630]    [Pg.36]    [Pg.187]    [Pg.163]    [Pg.163]    [Pg.150]    [Pg.107]    [Pg.122]    [Pg.180]    [Pg.186]    [Pg.193]    [Pg.195]    [Pg.337]    [Pg.382]    [Pg.703]    [Pg.336]    [Pg.70]    [Pg.100]    [Pg.107]    [Pg.122]    [Pg.180]   
See also in sourсe #XX -- [ Pg.78 , Pg.298 ]

See also in sourсe #XX -- [ Pg.78 , Pg.298 ]




SEARCH



Indolizidine

Indolizidines

Indolizidines formation

Ring formation

© 2024 chempedia.info