Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indoles synthesis reactions

Bartoli indole synthesis (reaction of vinyl magnesium halides with o-substituted nitroarenes) 05COC163. [Pg.59]

An important general method of preparing indoles, known as the Fischer Indole synthesis, consists in heating the phenylhydrazone of an aldehyde, ketone or keto-acld in the presence of a catalyst such as zinc chloride, hydrochloric acid or glacial acetic acid. Thus acrtophenone phenylhydrazone (I) gives 2-phenyllndole (I V). The synthesis involves an intramolecular condensation with the elimination of ammonia. The following is a plausible mechanism of the reaction ... [Pg.851]

Benzilic acid rearrangement Benzoin reaction (condensation) Blanc chloromethylation reaction Bouveault-Blanc reduction Bucherer hydantoin synthesis Bucherer reaction Cannizzaro reaction Claisen aldoi condensation Claisen condensation Claisen-Schmidt reaction. Clemmensen reduction Darzens glycidic ester condensation Diazoamino-aminoazo rearrangement Dieckmann reaction Diels-Alder reaction Doebner reaction Erlenmeyer azlactone synthesis Fischer indole synthesis Fischer-Speior esterification Friedel-Crafts reaction... [Pg.1210]

The development of methods for aromatic substitution based on catalysis by transition metals, especially palladium, has led to several new methods for indole synthesis. One is based on an intramolecular Heck reaction in which an... [Pg.35]

Another category Ic indole synthesis involves cyclization of a-anilino aldehydes or ketones under the influence of protonic or Lewis acids. This corresponds to retro.synthetic path d in Scheme 4.1. Considerable work on such reactions was done in the early 1960s by Julia and co-workers. The most successful examples involved alkylation of anilines with y-haloacetoacetic esters or amides. For example, heating IV-substituted anilines with ethyl 4-bromoacetoacetate followed by cyclization w ith ZnClj gave indole-3-acetate esterfi]. Additional examples are given in Table 4.3. [Pg.41]

The main example of a category I indole synthesis is the Hemetsberger procedure for preparation of indole-2-carboxylate esters from ot-azidocinna-mates[l]. The procedure involves condensation of an aromatic aldehyde with an azidoacetate ester, followed by thermolysis of the resulting a-azidocinna-mate. The conditions used for the base-catalysed condensation are critical since the azidoacetate enolate can decompose by elimination of nitrogen. Conditions developed by Moody usually give good yields[2]. This involves slow addition of the aldehyde and 3-5 equiv. of the azide to a cold solution of sodium ethoxide. While the thermolysis might be viewed as a nitrene insertion reaction, it has been demonstrated that azirine intermediates can be isolated at intermediate temperatures[3]. [Pg.45]

One of the virtues of the Fischer indole synthesis is that it can frequently be used to prepare indoles having functionalized substituents. This versatility extends beyond the range of very stable substituents such as alkoxy and halogens and includes esters, amides and hydroxy substituents. Table 7.3 gives some examples. These include cases of introduction of 3-acetic acid, 3-acetamide, 3-(2-aminoethyl)- and 3-(2-hydroxyethyl)- side-chains, all of which are of special importance in the preparation of biologically active indole derivatives. Entry 11 is an efficient synthesis of the non-steroidal anti-inflammatory drug indomethacin. A noteworthy feature of the reaction is the... [Pg.61]

Aromatic amines react with 1-haloketones or 1-hydroxyketones to yield substituted indoles. This reaction is known as the Bischler indole synthesis (30). [Pg.230]

Unsaturated hydrazones, unsaturated diazonium salts or hydrazones of 2,3,5-triketones can be used as suitable precursors for the formation of pyridazines in this type of cyclization reaction. As shown in Scheme 61, pyridazines are obtainable in a single step by thermal cyclization of the tricyanohydrazone (139), prepared from cyanoacetone phenylhydrazone and tetracyanoethylene (76CB1787). Similarly, in an attempted Fischer indole synthesis the hydrazone of the cyano compound (140) was transformed into a pyridazine (Scheme 61)... [Pg.41]

Formation of a 1,2-disubstituted hydrazine by acid hydrolysis of an appropriately substituted pyrazolidine has been noted (67HC(22)l), but the most interesting ring fission of pyrazolidines involves the N(l)—N(2) bond of 1-phenylpyrazolidines (421). If, instead of phenylhydrazone, compound (421) is used in the Fischer indole synthesis, N- aminopropylin-doles are formed (73T4045). Scheme 39 shows the reaction with cyclohexanone. [Pg.256]

Jap-KIingermarm reactions, 4, 301 oxidation, 4, 299 reactions, 4, 299 synthesis, 4, 362 tautomerism, 4, 38, 200 Indole, 5-amino-synthesis, 4, 341 Indole, C-amino-oxidation, 4, 299 tautomerism, 4, 298 Indole, 3-(2-aminobutyl)-as antidepressant, 4, 371 Indole, (2-aminoethyl)-synthesis, 4, 278 Indole, 3-(2-aminoethyl)-synthesis, 4, 337 Indole, aminomethyl-reactions, 4, 71 Indole, 4-aminomethyl-synthesis, 4, 150 Indole, (aminovinyl)-synthesis, 4, 286 Indole, 1-aroyl-oxidation, 4, 57 oxidative dimerization catalysis by Pd(II) salts, 4, 252 Indole, 1-aroyloxy-rearrangement, 4, 244 Indole, 2-aryl-nitration, 4, 211 nitrosation, 4, 210 synthesis, 4, 324 Indole, 3-(arylazo)-rearrangement, 4, 301 Indole, 3-(arylthio)-synthesis, 4, 368 Indole, 3-azophenyl-nitration, 4, 49 Indole, 1-benzenesulfonyl-by lithiation, 4, 238 Indole, 1-benzoyl photosensitized reactions with methyl acrylate, 4, 268 Indole, 3-benzoyl-l,2-dimethyl-reactions... [Pg.667]

Pyridazinium salts, 1-methoxy-reaction with pyridazines, 3, 23 Pyridazino[4,5-6]azepines synthesis, 7, 522 Pyridazino[4,5-d]azepines synthesis, 7, 522 Pyridazinofuroxans synthesis, 6, 425 Pyridazinoheteronins synthesis, 7, 729 Pyridazino[2,3-a]indole synthesis, 4, 297... [Pg.782]

A large number of Brpnsted and Lewis acid catalysts have been employed in the Fischer indole synthesis. Only a few have been found to be sufficiently useful for general use. It is worth noting that some Fischer indolizations are unsuccessful simply due to the sensitivity of the reaction intermediates or products under acidic conditions. In many such cases the thermal indolization process may be of use if the reaction intermediates or products are thermally stable (vide infra). If the products (intermediates) are labile to either thermal or acidic conditions, the use of pyridine chloride in pyridine or biphasic conditions are employed. The general mechanism for the acid catalyzed reaction is believed to be facilitated by the equilibrium between the aryl-hydrazone 13 (R = FF or Lewis acid) and the ene-hydrazine tautomer 14, presumably stabilizing the latter intermediate 14 by either protonation or complex formation (i.e. Lewis acid) at the more basic nitrogen atom (i.e. the 2-nitrogen atom in the arylhydrazone) is important. [Pg.117]

Anisole and mixtures of diethyl ether with aromatic hydrocarbons have both been widely employed as solvents for these reactions. Ethers other than diethyl ether and anisole have also been successfully used (cf. refs. 14-17). Hcxamethylphosphorotriamide has recently been used as a solvent for indole Grignard reactions. Young and Mizianty have recently described the use of an aromatic magnesium halide (phenylmagnesium bromide) for the synthesis of indole magnesium bromide. [Pg.45]

The pyridine-N-oxide 245 was converted into the cyanopyridine 246 and its isomer (Scheme 80). Grignard reaction, Fischer s indole synthesis, and N-protection gave a pyridinyl indole 247. Selenium dioxide selectively oxidized the methyl group to give the isonicotinic acid. The synthesis of Flavocarpine (244) was finally accomplished by a set of standard reactions as outlined in Scheme 80 (87TL5259). [Pg.136]

In order to allow further transformation to an indole, the carbonyl compound 8 must contain an a-methylene group. The hydrazone 1 needs not to be isolated. An equimolar mixture of arylhydrazine 7 and aldehyde or ketone 8 may be treated directly under the reaction conditions for the Fischer indole synthesis. ... [Pg.115]

The Fischer indole synthesis is of wide scope, and can be used for the preparation of substituted indoles and related systems. For example reaction of the phenylhydrazone 9, derived from cyclohexanone, yields the tetrahydrocar-bazole 10 ... [Pg.115]


See other pages where Indoles synthesis reactions is mentioned: [Pg.71]    [Pg.391]    [Pg.299]    [Pg.71]    [Pg.391]    [Pg.299]    [Pg.151]    [Pg.36]    [Pg.53]    [Pg.110]    [Pg.136]    [Pg.80]    [Pg.528]    [Pg.674]    [Pg.737]    [Pg.795]    [Pg.816]    [Pg.829]    [Pg.831]    [Pg.835]    [Pg.847]    [Pg.135]    [Pg.155]    [Pg.4]    [Pg.5]    [Pg.57]    [Pg.97]   
See also in sourсe #XX -- [ Pg.178 ]




SEARCH



Indole reactions

Indoles reactions

© 2024 chempedia.info