Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indole catalysts

Type of reaction C-C Ixuid formation Reaction conditions Water, room temperature Synthetic strategy Michael addition of indoles Catalyst Glucosyl tolylsidfonyl hydrazine (1)... [Pg.53]

Type of reaction C-C bond formation Reaction conditions Acetonitrile, room temperature Synthetic strategy Functionalization of indoles Catalyst p-Tolenesulfonic acid (PTSA)... [Pg.55]

These compounds can be malodorous as in the case of quinoline, or they can have a plecisant odor as does indole. They decompose on heating to give organic bases or ammonia that reduce the acidity of refining catalysts in conversion units such as reformers or crackers, and initiate gum formation in distillates (kerosene, gas oil). [Pg.326]

An important general method of preparing indoles, known as the Fischer Indole synthesis, consists in heating the phenylhydrazone of an aldehyde, ketone or keto-acld in the presence of a catalyst such as zinc chloride, hydrochloric acid or glacial acetic acid. Thus acrtophenone phenylhydrazone (I) gives 2-phenyllndole (I V). The synthesis involves an intramolecular condensation with the elimination of ammonia. The following is a plausible mechanism of the reaction ... [Pg.851]

Another issue of regioselectivity arises with meta-substituted arylhydrazones from which either 4- or 6-substitutcd indoles can be formed. Robinson has tabulated extensive data on this point[9]. A study comparing regioselectivity of cyclization as catalysed by HCl/EtOH and ZnClj was carried out for several m-substituted arylhydrazones of diethyl ketone[10]. The results given in Table 7.1 show some dependence on catalyst but mixtures are obtained under all conditions studied. [Pg.58]

A solution of trifluoroacetic acid in toluene was found to be advantageous for cydization of pyruvate hydrazoncs having nitro substituents[4]. p-Toluene-sulfonic acid or Amberlyst-15 in toluene has also been found to give excellent results in preparation of indole-2-carboxylale esters from pyruvate hydra-zoiies[5,6J. Acidic zeolite catalysts have been used with xylene as a solvent to convert phenylhydraziiies and ketones to indoles both in one-flask procedures and in a flow-through reactor[7]. [Pg.59]

Lithiation at C2 can also be the starting point for 2-arylatioii or vinylation. The lithiated indoles can be converted to stannanes or zinc reagents which can undergo Pd-catalysed coupling with aryl, vinyl, benzyl and allyl halides or sulfonates. The mechanism of the coupling reaction involves formation of a disubstituted palladium intermediate by a combination of ligand exchange and oxidative addition. Phosphine catalysts and salts are often important reaction components. [Pg.98]

The best procedures for 3-vinylation or 3-arylation of the indole ring involve palladium intermediates. Vinylations can be done by Heck reactions starting with 3-halo or 3-sulfonyloxyindoles. Under the standard conditions the active catalyst is a Pd(0) species which reacts with the indole by oxidative addition. A major con.sideration is the stability of the 3-halo or 3-sulfonyloxyindoles and usually an EW substituent is required on nitrogen. The range of alkenes which have been used successfully is quite broad and includes examples with both ER and EW substituents. Examples are given in Table 11.3. An alkene which has received special attention is methyl a-acetamidoacrylate which is useful for introduction of the tryptophan side-chain. This reaction will be discussed further in Chapter 13. [Pg.109]

Entry Indole reactant Arylation reagent Catalyst Yield (%) Ref. [Pg.111]

Standard Heck conditions were used to introduce the dchydroalanine side-chain with 4-bromo-3-iodo-l-(4-methylphenylsulfonyl)indole[12]. Using 4-fluoro-3-iodo-l-(4-methylphenylsulfonyl)indole as the reactant, Merlic and Semmelhack found that addition of 2 eq, of LiCl or KCl improved yields in reactions carried out with 10% Pd/C as the catalyst[13]. The addition of the dehyroalanine side chain can also be done by stoichiometric Pd-mediated vinylation (see Section 11.2). A series of C-subslituled dehydro tryptophans was prepared in 40-60% yield by this method[14]. [Pg.132]

Acylation. Acylation is the most rehable means of introducing a 3-substituent on the indole ring. Because 3-acyl substituents can be easily reduced to 3-aLkyl groups, a two-step acylation—reduction sequence is often an attractive alternative to direct 3-aLkylation. Several kinds of conditions have been employed for acylation. Very reactive acyl haUdes, such as oxalyl chloride, can effect substitution directiy without any catalyst. Normal acid chlorides are usually allowed to react with the magnesium (15) or 2inc (16) salts. The Vilsmeier-Haack conditions involving an amide and phosphoms oxychloride, in which a chloroiminium ion is the active electrophile, frequentiy give excellent yields of 3-acylindoles. [Pg.85]

Transition-Metal Catalyzed Cyclizations. o-Halogenated anilines and anilides can serve as indole precursors in a group of reactions which are typically cataly2ed by transition metals. Several catalysts have been developed which convert o-haloanilines or anilides to indoles by reaction with acetylenes. An early procedure involved coupling to a copper acetyUde with o-iodoaniline. A more versatile procedure involves palladium catalysis of the reaction of an o-bromo- or o-trifluoromethylsulfonyloxyanihde with a triaLkylstaimylalkyne. The reaction is conducted in two stages, first with a Pd(0) and then a Pd(II) catalyst (29). [Pg.87]

All lation of A Heterocycles. Indoles (25), imida2oles (26), pyra2oles (27), ben2otria2oles (27), or other heterocycles are generally alkylated in the presence of 50% aqueous NaOH and catalyst hen 2y1triethy1 amm onium chloride without solvent or in chloroben2ene or toluene. [Pg.189]

B. Methyl indole-4-carboxylate (30). A mixture of 7.0 g (28 mmol) of methyl trans-2-[ -(dimethylamino)vinyl]-3-nitrobenzoate(29) in 140 mL of dry benzene which contained 1.4 g of 10% Pd/C was shaken in a Parr apparatus under Hj (50 psi) for 1.5 h. The catalyst was removed by filtration, and the benzene solution was washed with 30 mL of 5% aq. HCl, brine and dried over MgS04. After removal of the solvent under reduced pressure, the residue was purified via chromatography on silica gel to furnish 6.9 g (82%) of methyl indole-4-carboxylate (30). [Pg.108]

The Fischer indole synthesis can be regarded as the cyclization of an arylhydrazone 1 of an aldehyde or ketone by treatment with acid catalyst or effected thermally to form the indole nucleus 2. ... [Pg.116]

A large number of Brpnsted and Lewis acid catalysts have been employed in the Fischer indole synthesis. Only a few have been found to be sufficiently useful for general use. It is worth noting that some Fischer indolizations are unsuccessful simply due to the sensitivity of the reaction intermediates or products under acidic conditions. In many such cases the thermal indolization process may be of use if the reaction intermediates or products are thermally stable (vide infra). If the products (intermediates) are labile to either thermal or acidic conditions, the use of pyridine chloride in pyridine or biphasic conditions are employed. The general mechanism for the acid catalyzed reaction is believed to be facilitated by the equilibrium between the aryl-hydrazone 13 (R = FF or Lewis acid) and the ene-hydrazine tautomer 14, presumably stabilizing the latter intermediate 14 by either protonation or complex formation (i.e. Lewis acid) at the more basic nitrogen atom (i.e. the 2-nitrogen atom in the arylhydrazone) is important. [Pg.117]

It has been proposed that protonation or complex formation at the 2-nitrogen atom of 14 would enhance the polarization of the r,6 -7i system and facilitate the rearrangement leading to new C-C bond formation. The equilibrium between the arylhydrazone and its ene-hydrazine tautomer is continuously promoted to the right by the irreversible rearomatization in stage II of the process. The indolization of arylhydrazones on heating in the presence of (or absence of) solvent under non-catalytic conditions can be rationalized by the formation of the transient intermediate 14 (R = H). Under these thermal conditions, the equilibrium is continuously pushed to the right in favor of indole formation. Some commonly used catalysts in this process are summarized in Table 3.4.1. [Pg.118]

Table 3.4.1. Commonly used catalysts for the Fischer indole synthesis... Table 3.4.1. Commonly used catalysts for the Fischer indole synthesis...
Many aryhydrazones provide two or more isomers when subjected to the conditions of the Fischer indole cyclization. The product ratio and the direction of indolization can also be affected by different reaction conditions (i.e. catalysts and solvents), which is attributed, at least in part, to the relative stabilities of the two possible tautomeric ene-hydrazine intermediates. Generally, strongly acidic conditions favor formation of the least substituted ene-hydrazine, while cyclization carried out in weak acids favors the most substituted ene-hydrazine. Eaton s acid (10% P2O5 in MeSOsH) has been demonstrated to be an effective catalyst for the preparation of 3-unsubstituted indoles from methyl ketones under strongly acidic conditions. Many comprehensive reviews on this topic have appeared. ... [Pg.119]

The highest yields in the Ciamician-Dennstedt reaction have been achieved using phase transfer catalysts (Table 8.3.1). In the reaction, the pyrrole or indole and a phase transfer catalyst (PTC, in this case benzyltriethylammonium chloride) are dissolved in chloroform and aqueous sodium hydroxide is added. Yields are typically in the 40s to 60s (rather than in the 20s for a typical Ciamician-Dennstedt reaction). More recently, yields as high as 80% have been reported using tetra-n-butylammonium hydrogen sulphate as the phase transfer catalyst. ... [Pg.351]


See other pages where Indole catalysts is mentioned: [Pg.118]    [Pg.118]    [Pg.79]    [Pg.251]    [Pg.7]    [Pg.8]    [Pg.15]    [Pg.20]    [Pg.21]    [Pg.55]    [Pg.76]    [Pg.100]    [Pg.113]    [Pg.85]    [Pg.87]    [Pg.88]    [Pg.297]    [Pg.61]    [Pg.110]    [Pg.282]    [Pg.591]    [Pg.118]    [Pg.155]    [Pg.158]    [Pg.172]    [Pg.22]   
See also in sourсe #XX -- [ Pg.130 ]

See also in sourсe #XX -- [ Pg.130 ]




SEARCH



Catalysts indoles

Indole cobalt catalysts

Indoles catalyst systems

Indoles palladium catalysts

Michael Additions of Indoles to Conjugate Systems by Various Acid Catalysts

Palladium catalysts Larock indole synthesis

Rhodium catalysts indole functionalization

© 2024 chempedia.info