Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

INDEX nucleophiles

This indicated that retention had taken place. Note that both products are optically inactive and so caimot be told apart by differences in rotation. The meso and d/ dibromides have different boiling points and indexes of refraction and were identified by these properties. Even more convincing evidence was that either of the two threo isomers alone gave not just one of the enantiomeric dibromides, but the dl pair. The reason for this is that the intermediate present after the attack by the neighboring group (17) is symmetrical, so the external nucleophile Br can attack... [Pg.405]

This means there are 42 entries that have the words AMBIDENT and NUCLEOPHILE somewhere in them in the titles, keywords, or index entries. We can now, if we wish, display any or all of them. But a particular entry might have these two words in unrelated contexts, for example, it might be a paper about ambident electrophiles, but which also has NUCLEOPHILE as an index term. We would presumably get fewer papers, but with a higher percentage of relevant ones, if we could ask for AMBIDENT NUCLEOPHILE, and in fact, the system does allow... [Pg.1632]

The behavior of the different amines depends on at least four factors basicity, nucleophilicity, steric hindrance and solvation. In the literature (16), 126 aliphatic and aromatic amines have been classified by a statistical analysis of the data for the following parameters molar mass (mm), refractive index (nD), density (d), boiling point (bp), molar volume, and pKa. On such a premise, a Cartesian co-ordinate graph places the amines in four quadrants (16). In our preliminary tests, amines representative of each quadrant have been investigated, and chosen by consideration of their toxicity, commercial availability and price (Table 1). [Pg.103]

Evaluation of the only appropriate Fukui function is required for investigating an intramolecular reaction, as local softness is merely scaling of Fukui function (as shown in Equation 12.7), and does not alter the intramolecular reactivity trend. For this type, one needs to evaluate the proper Fukui functions (/+ or / ) for the different potential sites of the substrate. For example, the Fukui function values for the C and O atoms of H2CO, shown above, predicts that O atom should be the preferred site for an electrophilic attack, whereas C atom will be open to a nucleophilic attack. Atomic Fukui function for electrophilic attack (fc ) for the ring carbon atoms has been used to study the directing ability of substituents in electrophilic substitution reaction of monosubstituted benzene [23]. In some cases, it was shown that relative electrophilicity (f+/f ) or nucleophilicity (/ /f+) indices provide better intramolecular reactivity trend [23]. For example, basicity of substituted anilines could be explained successfully using relative nucleophilicity index ( / /f 1) [23]. Note however that these parameters are not able to differentiate the preferred site of protonation in benzene derivatives, determined from the absolute proton affinities [24],... [Pg.170]

In addition to the above prescriptions, many other quantities such as solution phase ionization potentials (IPs) [15], nuclear magnetic resonance (NMR) chemical shifts and IR absorption frequencies [16-18], charge decompositions [19], lowest unoccupied molecular orbital (LUMO) energies [20-23], IPs [24], redox potentials [25], high-performance liquid chromatography (HPLC) [26], solid-state syntheses [27], Ke values [28], isoelectrophilic windows [29], and the harmonic oscillator models of the aromaticity (HOMA) index [30], have been proposed in the literature to understand the electrophilic and nucleophilic characteristics of chemical systems. [Pg.180]

Recently, Jaramillo et al. [43] introduced a nucleophilicity scale, depending on the electrophilic partner, and suggested that the nucleophilicity index can be written as... [Pg.185]

Besides the applications of the electrophilicity index mentioned in the review article [40], following recent applications and developments have been observed, including relationship between basicity and nucleophilicity [64], 3D-quantitative structure activity analysis [65], Quantitative Structure-Toxicity Relationship (QSTR) [66], redox potential [67,68], Woodward-Hoffmann rules [69], Michael-type reactions [70], Sn2 reactions [71], multiphilic descriptions [72], etc. Molecular systems include silylenes [73], heterocyclohexanones [74], pyrido-di-indoles [65], bipyridine [75], aromatic and heterocyclic sulfonamides [76], substituted nitrenes and phosphi-nidenes [77], first-row transition metal ions [67], triruthenium ring core structures [78], benzhydryl derivatives [79], multivalent superatoms [80], nitrobenzodifuroxan [70], dialkylpyridinium ions [81], dioxins [82], arsenosugars and thioarsenicals [83], dynamic properties of clusters and nanostructures [84], porphyrin compounds [85-87], and so on. [Pg.189]

A comparison of porphyrin and pincer activity rationalized through reactivity index Porphyrin and pincer complexes are both important categories of compounds in biological and catalytic systems. Structure, spectroscopy, and reactivity properties of porphyrin pincers are systematically studied for selection of divalent metal ions. It is reported that the porphyrin pincers are structurally and spectroscopically different from their precursors and are more reactive in electrophilic and nucleophilic reactions. These results are implicative in chemical modification of hemoproteins and understanding the chemical reactivity in heme-containing and other biologically important complexes and cofactors [45]. [Pg.511]

The hydration of simple ketenes (RCH=C=0—> RCH2COOH) also shows relatively constant values of oh w which are quite low (100-1000) (Tidwell, 1990 Allen et al., 1992), implying p/fj = 11 to 12 for the transition state for water attack. Corresponding to this, the Leffler index and the /3nuc are both about 0.25. Whether these low values really indicate an early transition state or arise because water and hydroxide ion react quite differently is not yet clear. However, it appears possible that water attack proceeds through a cyclic mechanism involving two (or more) water molecules (Allen et al., 1992) whereas hydroxide ion probably attacks conventionally as a nucleophile (Tidwell, 1990). Of course, any mechanism for the water reaction which is superior to simple nucleophilic attack will elevate kw and necessarily lead to low kOH/kw ratios. [Pg.52]

The index j is taken over all MO s of the molecule under attack, and Vj is the occupancy v is 0, 1 or 2 according as the reagent is electrophilic, radical or nucleophilic. The coefficient of j8 in (70) is itself independent of p, and is thus merely an expansion coefficient, analogous to those of... [Pg.113]

Also other Type B and C series from Table II are consistent with the above elimination mechanisms. The dehydration rate of the alcohols ROH on an acid clay (series 16) increased with the calculated inductive effect of the group R. For the dehydrochlorination of polychloroethanes on basic catalysts (series 20), the rate could be correlated with a quantum-chemical reactivity index, namely the delocalizability of the hydrogen atoms by a nucleophilic attack similar indices for a radical or electrophilic attack on the chlorine atoms did not fit the data. The rates of alkylbenzene cracking on silica-alumina catalysts have been correlated with the enthalpies of formation of the corresponding alkylcarbonium ions (series 24). Similar correlations have been obtained for the dehydrosulfidation of alkanethiols and dialkyl sulfides on silica-alumina (series 36 and 37) in these cases, correlation by the Taft equation is also possible. The rate of cracking of 1,1-diarylethanes increased with the increasing basicity of the reactants (series 33). [Pg.169]

On the basis of this equation, an index of nucleophilicity pt can be assigned to each nucleophile Y (see Table 4.13). It is found, moreover, that a plot against pt of logfcy, for reaction of Y with another Pt(II) neutral substrate, is also often linear. Thus, Eq. (2.168) applies, and 5 is termed the nucleophilic discrimination factor (Sec. 4.7.1). Some of the departures from linearity of plots of Ary vs p, which have been observed, disappear if the Pt reference substrate chosen is of the same charge as the Pt reactants. The value of p, for a bulky nucleophile has also to be modified to allow for steric hindrance features. [Pg.104]

To improve the solubility of polyimides, Korshak and co-workers used l,l-dichloro-2,2-bis(4-aminophenyl)-ethylene as the starting nucleophile [17] (Scheme 3.2). The resulting polymers turned out to be of relatively high molecular weight (r = 1.2-1.4 dl/g), heat resistant > 270 °C) and fire resistant (oxygen index (OI) = 36-39) (Table 3.2). Polypyromellitimide was soluble in H2SO4 only, but polyimides based on the dianhydrides of benzophenone-3,3, 4,4 -tetracarboxylic acid and diphenyloxide-3,3, 4,4 -tetracarboxylic acid were also soluble in w-cresol and a trichloroethane (TCE)/phenol (3 1) mixture. Diphenyloxide-3,3, 4,4 -tetracarboxylic acid was soluble even in N-methyl-2-pyrrolidone (NMP) (Scheme 3.2). [Pg.16]

In addition to allowing comparison among experiments carried out in different solvents, the m—Y system serves as an important tool for study of mechanism. Sensitivity to ionizing power, measured by m, is an index of the degree of charge separation at the transition state. The ratio of rates in two solvents of equal Y but different nucleophilicity provides evidence about nucleophilic assistance by a solvent molecule during the ionization. [Pg.233]


See other pages where INDEX nucleophiles is mentioned: [Pg.1282]    [Pg.500]    [Pg.83]    [Pg.151]    [Pg.201]    [Pg.1637]    [Pg.103]    [Pg.268]    [Pg.794]    [Pg.185]    [Pg.186]    [Pg.187]    [Pg.187]    [Pg.504]    [Pg.505]    [Pg.509]    [Pg.543]    [Pg.166]    [Pg.178]    [Pg.2]    [Pg.112]    [Pg.337]    [Pg.40]    [Pg.599]    [Pg.83]    [Pg.1266]    [Pg.304]    [Pg.500]    [Pg.1997]    [Pg.186]    [Pg.127]    [Pg.127]   
See also in sourсe #XX -- [ Pg.175 , Pg.176 ]




SEARCH



Chemical potential nucleophilicity index

Electrophilicity nucleophilicity index

INDEX nucleophiles, reactions with

INDEX nucleophilic addition

INDEX nucleophilic aromatic substitution

INDEX nucleophilic substitution

Local nucleophilicity index

Nucleophilic additions to acetylenic esters CUMULATIVE INDEX OF TITLES, VOLUMES

Nucleophilic aromatic INDEX

Nucleophilic reactions INDEX

Nucleophilicity index

Nucleophilicity index

Subject index with nucleophiles

© 2024 chempedia.info