Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dipole moments 228 INDEX

Table 6.4 Refraction index, dipole moment, and related solubility parameters for solvents... Table 6.4 Refraction index, dipole moment, and related solubility parameters for solvents...
Snrface or volnme density of molecnles (atoms), nnmber of reflections Refractive index Dipole moment Electric polarization Reflection coefficient Reflectance Oscillator strength Time/transmission coefficient Temperatnre/transmittance Velocity... [Pg.748]

VISCOSITY, SURFACE TENSION, DIELECTRIC CONSTANT, DIPOLE MOMENT, AND REFRACTIVE INDEX... [Pg.449]

Physical Properties. Properties of some alkyl peroxyesters are Hsted in Table 13 and the properties of some alkyl areneperoxysulfonates are given in Table 14. Mass spectra (226), total energies, and dipole moments (227) oxygen—oxygen bond-dissociation energies (44,228) and boiling points, melting points, densities, and refractive indexes (44,168,213) have been reported for a variety of tert-huty peroxycarboxylates. [Pg.127]

Compound CAS Registry Number Boiling point, °C Density at 20°C, g/cm Dipole moment, 10-"° Cm Index of refraction, < PR nmr Parameters chemical t shift, ppm ... [Pg.378]

The physical data index summarizes the quantitative data given for specific compounds in the text, tables and figures in Volumes 1-7. It does not give any actual data but includes references both to the appropriate text page and to the original literature. The structural and spectroscopic methods covered include UV, IR, Raman, microwave, MS, PES, NMR, ORD, CD, X-ray, neutron and electron diffraction, together with such quantities as dipole moment, pX a, rate constant and activation energy, and equilibrium constant. [Pg.6]

In order to obtain better separations it is very important to know the bulk physical properties of solvents (viscosity, refractive index, dielectric constant, dipole moment. [Pg.68]

It is important to know the influence of the physicochemical parameters of the mobile phase (dipole moment, dielectric constant, and refractive index) on solvent strength and selectivity. The main interactions in planar chromatography between the molecules of the mobile phases and those of solutes are caused by dispersion forces related to the refractive index, dipole-dipole forces related to the dipole moment, induction forces related to a permanent dipole and an induced one, hydrogen bonding, and dielectric interactions related to the dielectric constant. Solvent strength depends mainly on the dipole moment of the mobile phase, whereas the solvent selectivity depends on the dielectric constant of the mobile phase. [Pg.95]

Solvent Boiling Point CO Viscosity (CP) Refractive Index UV Cut-off (nm) Dielectric Constant Dipole Moment (D) Surface Tension (dyne/cm)... [Pg.747]

Those who applied quantum mechanics to atoms and molecules had a wealth of chemists data at hand well-defined bond properties including dipole moments, index of refractions, and ultraviolet absorption qualities and polarizability as well as well-defined valence properties of atoms in molecules. If one attempted to set up a wave equation for the water molecule, for example, there were 39 independent variables, reducible to 20 by symmetry considerations. But the experimental facts of chemistry implied or required certain properties that made it possible to solve equations by semiempirical methods. "Chemistry could be said to be solving the mathematicians problems and not the other way around," according to Coulson. 148... [Pg.276]

Equations (7.6) and (7.7) provide a means of determining excited dipole moments together with dipole vector angles, but they are valid only if (i) the dipole moments in the FC and relaxed states are identical, (ii) the cavity radius remains unchanged upon excitation, (iii) the solvent shifts are measured in solvents of the same refractive index but of different dielectric constants. [Pg.212]

Quantitative determination of solvent polarity is difficult, and quantitative methods rely on physical properties such as dielectric constant, dipole moment and refractive index. It is not possible to determine the solvent polarity by measuring an individual solvent property, due to the complexity of solute-solvent interactions, and for this reason empirical scales of solvent polarity based on chemical... [Pg.18]

In all cases the dielectric constant used is that of the pure solvent. Neglect of the solute is usually justified by its low concentration and the assumption that any necessary correction would be additive. In at least a few cases where the first two expressions have been employed the linearity of the results is to some extent dependent on how closely the refractive index of the solute meets the conditions n2 = 2.0 or 2.5 a situation not always recognized by the investigators. In one instance attempts have been made to clarify the role of solvent reaction field by examining solutes with different dipole moment orientations relative to the bonds involving coupled atoms. [Pg.125]

In the equation s is the measured dielectric constant and e0 the permittivity of the vacuum, M is the molar mass and p the molecular density, while Aa and A (po2) are the isotope effects on the polarizability and the square of the permanent dipole moment respectively. Unfortunately, because the isotope effects under discussion are small, and high precision in measurements of bulk phase polarization is difficult to achieve, this approach has fallen into disfavor and now is only rarely used. Polarizability isotope effects, Aa, are better determined by measuring the frequency dependence of the refractive index (see below), and isotope effects on permanent dipole moments with spectroscopic experiments. [Pg.393]

Using Equation 12.12 one obtains (AA/A — Av /v 2) = (Aao/ao). We see that precise refractive index differences measured over a reasonable range of wavelengths allow the recovery of the polarizability isotope effect (i.e. the isotope effect on the electric field induced dipole moment), provided the molar volume and its isotope effect are available. [Pg.400]

Yellowish red oily liquid pungent penetrating odor fumes in air refractive index 1.670 at 20°C density 1.69 g/mL dipole moment 1.60 dielectric constant 4.9 at 22°C freezes at -77°C boils at 137°C reacts with water soluble in ethanol, benzene, ether, chloroform, and carbon tetrachloride dissolves sulfur at ambient temperature (67 g/100 g sulfur chloride). [Pg.893]

Aromatic substitution reactions are often complicated and multistep processes. A correlation, however, in many cases can be found between the charged attacking species and the electron density distribution in the molecule attacked during electrophilic and nucleoph c substitution. No such correlation is expected in radical substitution where the attacking particles are neutral, rather a correlation between the reactivities of separate bonds and a free valency index of the bond order. This allows the prediction of the most reactive bonds. Such an approach has been used by researchers who applied quantum calculations to estimate the reactivities of the isomeric thienothiophenes and to compare them with thiophene or naphthalene. " Until recently quantum methods for studying reactivities of aromatics and heteroaromatics were developed mainly in the r-electron approximation (see, for example, Streitwieser and Zahradnik ). The M orbitals of a sulfur atom were shown not to contribute substantially to calculations of dipole moments, polarographic reduction potentials, spin-density distribution, ... [Pg.186]

The physical properties of solvents greatly influence the choice of solvent for a particular application. The solvent should be liquid under the temperature and pressure conditions at which it is employed. Its thermodynamic properties, such as the density and vapor pressure, temperature and pressure coefficients, as well as the heat capacity and surface tension, and transport properties, such as viscosity, diffusion coefficient, and thermal conductivity, also need to be considered. Electrical, optical, and magnetic properties, such as the dipole moment, dielectric constant, refractive index, magnetic susceptibility, and electrical conductance are relevant, too. Furthermore, molecular... [Pg.51]

Physical properties of the solvent are used to describe polarity scales. These include both bulk properties, such as dielectric constant (relative permittivity), refractive index, latent heat of fusion, and vaporization, and molecular properties, such as dipole moment. A second set of polarity assessments has used measures of the chemical interactions between solvents and convenient reference solutes (see table 3.2). Polarity is a subjective phenomenon. (To a synthetic organic chemist, dichloromethane may be a polar solvent, whereas to an inorganic chemist, who is used to water, liquid ammonia, and concentrated sulfuric acid, dichloromethane has low polarity.)... [Pg.54]


See other pages where Dipole moments 228 INDEX is mentioned: [Pg.197]    [Pg.510]    [Pg.1335]    [Pg.179]    [Pg.197]    [Pg.510]    [Pg.1335]    [Pg.179]    [Pg.84]    [Pg.264]    [Pg.747]    [Pg.143]    [Pg.173]    [Pg.74]    [Pg.118]    [Pg.129]    [Pg.622]    [Pg.9]    [Pg.524]    [Pg.522]    [Pg.8]    [Pg.614]    [Pg.185]    [Pg.109]    [Pg.202]    [Pg.160]    [Pg.169]    [Pg.88]    [Pg.258]    [Pg.565]    [Pg.149]    [Pg.56]    [Pg.186]    [Pg.15]    [Pg.652]   
See also in sourсe #XX -- [ Pg.147 ]

See also in sourсe #XX -- [ Pg.147 ]

See also in sourсe #XX -- [ Pg.147 ]




SEARCH



© 2024 chempedia.info