Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indazoles, acidity ring synthesis

H-4,7 - Indazoledione, 4,7-dihydro-3-vinyl-synthesis, 1, 279 Indazole-l-lsN synthesis, 5, 291 Indazole-2-lsN synthesis, 5, 291 Indazoles acidity, 5, 224 N-l -alkylated ring opening, 5, 219 alkylation, S, 228, 230 amination, S, 55, 234 anions... [Pg.665]

In the section dealing with electrophilic attack at carbon some results on indazole homocyclic reactivity were presented nitration at position 5 (Section 4.04.2.1.4(ii)), sulfon-ation at position 7 (Section 4.04.2.1.4(iii)) and bromination at positions 5 and 7 (Section 4.04.2.1.4(v)). The orientation depends on the nature (cationic, neutral or anionic) of the indazole. Protonation, for instance, deactivates the heterocycle and directs the attack towards the fused benzene ring. A careful study of the nitration of indazoles at positions 2, 3, 5 or 7 has been published by Habraken (7UOC3084) who described the synthesis of several dinitroindazoles (5,7 5,6 3,5 3,6 3,4 3,7). The kinetics of the nitration of indazole to form the 5-nitro derivative have been determined (72JCS(P2)632). The rate profile at acidities below 90% sulfuric acid shows that the reaction involves the conjugate acid of indazole. [Pg.259]

The synthesis of li7-cyclopropa[/]phenanthrene (142) presented unexpected difficulties and met many failures. Early approaches used a variety of schemes which were not adequate for this highly reactive compound and invariably produced ring-opened products. Thus irradiation of the substituted indazole 138 resulted in nitrogen extrusion and formation of the biradical 139, which reacted with the solvent, benzene, to form 140. The desired cycloproparene 141 was not formed. Ring contraction of 144, in turn, produced derivatives of 9-phenanthroic acid, the formation of which was shown not to involve phenanthrocyclopropenone (143). °° The attempted 1/3/elimination of 145 was similarly unsuccessful and afforded no 142. ... [Pg.56]

The synthesis of pazopanib (1) involves sequential animation of 2,4-dichloropyrimidine 25 with 6-amino-2,3-dimethylindazole 24 and 5-amino-2-methyl-benzenesulfonamide 28. The 6-amino-2,3-dimethylindazole 24, on the other hand, was prepared from 2-ethylphenylamine 20 via 5-nitration with fuming nitric acid and concentrated sulfuric acid, followed by treatment with isoamyl nitrite and acetic acid to produce 6-nitro-3-methylindazole 22. The 6-nitro group was reduced with stannous chloride and concentrated HC1 in glyme and subsequently methylated at the C2 position of the indazole ring with trimethyloxonium tetrafluoroborate in acetone to produce 6-amino-2,3-dimethylindazole 24. The resultant indazole 24 was condensed with 2,4-dichloropyrimidine 25 in the presence of sodium bicarbonate in ethanol/THF and subsequent iV-methylation with iodomethane and cesium carbonate to produce 27. The 2-chloro group of pyrimidine was then allowed to react with 5-amino-2-methyl-benzenesulfonamide 28 in catalytic HCl/isopropanol and heated to reflux to deliver pazopanib hydrochloride (1) in good yield. [Pg.118]


See other pages where Indazoles, acidity ring synthesis is mentioned: [Pg.665]    [Pg.665]    [Pg.665]    [Pg.138]    [Pg.254]    [Pg.212]    [Pg.242]    [Pg.641]    [Pg.641]    [Pg.295]    [Pg.41]    [Pg.62]    [Pg.101]    [Pg.212]    [Pg.641]    [Pg.10]    [Pg.302]   


SEARCH



Indazole ring

Indazole synthesis

Indazoles

Indazoles synthesis

Indazoles, acidity

Indazols

© 2024 chempedia.info