Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Identity, loss

By comparing the losses of residual solvent at temperatures of 110, 75 and 40°C Vieille found that identical losses are obtained on heating the powder for an identical number of... [Pg.623]

During SIDAs, isotopic dilution takes place after addition of the labelled standard and its equilibration with the analyte. Due to their almost identical chemical and physical properties, the ratio of the isotopologues is stable throughout all subsequent analytical steps. Final mass spectrometry enables the determination of the isotopologues. From this ratio, the content of the analyte in the sample can be calculated with the known amount of the internal standard added in the beginning. In contrast, a structurally different internal standard may be discriminated against and, thus, cause systematic errors and imprecision. Therefore, in SIDA losses of the analyte are completely compensated for by identical losses of the isotopologue, whereas a structurally different internal standard may show different losses. [Pg.432]

In SIDA, losses of the analyte are completely compensated for by identical losses of the isotopologic internal standard. [Pg.445]

The radiation and temperature dependent mechanical properties of viscoelastic materials (modulus and loss) are of great interest throughout the plastics, polymer, and rubber from initial design to routine production. There are a number of laboratory research instruments are available to determine these properties. All these hardness tests conducted on polymeric materials involve the penetration of the sample under consideration by loaded spheres or other geometric shapes [1]. Most of these tests are to some extent arbitrary because the penetration of an indenter into viscoelastic material increases with time. For example, standard durometer test (the "Shore A") is widely used to measure the static "hardness" or resistance to indentation. However, it does not measure basic material properties, and its results depend on the specimen geometry (it is difficult to make available the identity of the initial position of the devices on cylinder or spherical surfaces while measuring) and test conditions, and some arbitrary time must be selected to compare different materials. [Pg.239]

Thus the kinetic and statistical mechanical derivations may be brought into identity by means of a specific series of assumptions, including the assumption that the internal partition functions are the same for the two states (see Ref. 12). As discussed in Section XVI-4A, this last is almost certainly not the case because as a minimum effect some loss of rotational degrees of freedom should occur on adsorption. [Pg.609]

Figure Bl.6.12 Ionization-energy spectrum of carbonyl sulphide obtained by dipole (e, 2e) spectroscopy [18], The incident-electron energy was 3.5 keV, the scattered incident electron was detected in the forward direction and the ejected (ionized) electron detected in coincidence at 54.7° (angular anisotropies cancel at this magic angle ). The energy of the two outgoing electrons was scaimed keeping the net energy loss fixed at 40 eV so that the spectrum is essentially identical to the 40 eV photoabsorption spectrum. Peaks are identified with ionization of valence electrons from the indicated molecular orbitals. Figure Bl.6.12 Ionization-energy spectrum of carbonyl sulphide obtained by dipole (e, 2e) spectroscopy [18], The incident-electron energy was 3.5 keV, the scattered incident electron was detected in the forward direction and the ejected (ionized) electron detected in coincidence at 54.7° (angular anisotropies cancel at this magic angle ). The energy of the two outgoing electrons was scaimed keeping the net energy loss fixed at 40 eV so that the spectrum is essentially identical to the 40 eV photoabsorption spectrum. Peaks are identified with ionization of valence electrons from the indicated molecular orbitals.
Here, M is a constant, symmetric positive definite mass matrix. We assume without loss of generality that M is simply the identity matrix I. Otherwise, this is achieved by the familiar transformation... [Pg.422]

Adventitious losses of the reagent, due, e.g., to the chemical action of the alkaline glass vessels, slight absorption by the corks, etc., are almost identical for the actual and the control experiments and therefore do nor affect the difference in result between the two experiments. [Pg.450]

The successful application of an external standardization or the method of standard additions, depends on the analyst s ability to handle samples and standards repro-ducibly. When a procedure cannot be controlled to the extent that all samples and standards are treated equally, the accuracy and precision of the standardization may suffer. For example, if an analyte is present in a volatile solvent, its concentration will increase if some solvent is lost to evaporation. Suppose that you have a sample and a standard with identical concentrations of analyte and identical signals. If both experience the same loss of solvent their concentrations of analyte and signals will continue to be identical. In effect, we can ignore changes in concentration due to evaporation provided that the samples and standards experience an equivalent loss of solvent. If an identical standard and sample experience different losses of solvent. [Pg.115]

Figure 3.16a shows the storage and loss components of the compliance of crystalline polytetrafluoroethylene at 22.6°C. While not identical to the theoretical curve based on a single Voigt element, the general features are readily recognizable. Note that the range of frequencies over which the feature in Fig. 3.16a develops is much narrower than suggested by the scale in Fig. 3.13. This is because the sample under investigation is crystalline. For amorphous polymers, the observed loss peaks are actually broader than predicted by a... Figure 3.16a shows the storage and loss components of the compliance of crystalline polytetrafluoroethylene at 22.6°C. While not identical to the theoretical curve based on a single Voigt element, the general features are readily recognizable. Note that the range of frequencies over which the feature in Fig. 3.16a develops is much narrower than suggested by the scale in Fig. 3.13. This is because the sample under investigation is crystalline. For amorphous polymers, the observed loss peaks are actually broader than predicted by a...
The chemistry of propylene is characterized both by the double bond and by the aHyUc hydrogen atoms. Propylene is the smallest stable unsaturated hydrocarbon molecule that exhibits low order symmetry, ie, only reflection along the main plane. This loss of symmetry, which implies the possibiUty of different types of chemical reactions, is also responsible for the existence of the propylene dipole moment of 0.35 D. Carbon atoms 1 and 2 have trigonal planar geometry identical to that of ethylene. Generally, these carbons are not free to rotate, because of the double bond. Carbon atom 3 is tetrahedral, like methane, and is free to rotate. The hydrogen atoms attached to this carbon are aUyflc. [Pg.124]

Figure 3 shows a simple schematic diagram of an oxygen-based process. Ethylene, oxygen, and the recycle gas stream are combined before entering the tubular reactors. The basic equipment for the reaction system is identical to that described for the air-based process, with one exception the purge reactor system is absent and a carbon dioxide removal unit is incorporated. The CO2 removal scheme illustrated is based on a patent by Shell Oil Co. (127), and minimises the loss of valuable ethylene in the process. [Pg.458]

Although the conventional mass spectra of the five C- nitro derivatives of indazole are nearly identical, the corresponding metastable peak shapes associated with the loss of NO-can be used to differentiate the five isomers (790MS114). The protonation and ethylation occurring in a methane chemical ionization source have been studied for a variety of aromatic amines, including indazoles (80OMS144). As in solution (Section 4.04.2.1.3), the N-2 atom is the more basic and the more nucleophilic (Scheme 5). [Pg.203]

The advantages of SEXAFS/NEXAFS can be negated by the inconvenience of having to travel to synchrotron radiation centers to perform the experiments. This has led to attempts to exploit EXAFS-Iike phenomena in laboratory-based techniques, especially using electron beams. Despite doubts over the theory there appears to be good experimental evidence that electron energy loss fine structure (EELFS) yields structural information in an identical manner to EXAFS. However, few EELFS experiments have been performed, and the technique appears to be more raxing than SEXAFS. [Pg.231]

Dissipation factor (loss tangent) lEC 250. As explained in the chapter, this is the tangent of the dielectric loss angle and is now more commonly used than the power factor, which is the sine of the loss angle. When the angle is small the two are almost identical (e.g. for a loss angle of 10° the difference is about 1.5%). [Pg.122]


See other pages where Identity, loss is mentioned: [Pg.464]    [Pg.408]    [Pg.430]    [Pg.133]    [Pg.84]    [Pg.464]    [Pg.408]    [Pg.430]    [Pg.133]    [Pg.84]    [Pg.596]    [Pg.1323]    [Pg.2473]    [Pg.3010]    [Pg.3047]    [Pg.253]    [Pg.1136]    [Pg.391]    [Pg.206]    [Pg.534]    [Pg.379]    [Pg.199]    [Pg.123]    [Pg.447]    [Pg.201]    [Pg.541]    [Pg.269]    [Pg.162]    [Pg.477]    [Pg.764]    [Pg.1144]    [Pg.1213]    [Pg.142]    [Pg.424]    [Pg.135]    [Pg.281]    [Pg.212]    [Pg.472]    [Pg.230]   
See also in sourсe #XX -- [ Pg.5 , Pg.213 ]




SEARCH



© 2024 chempedia.info