Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hypercholesterolemia drugs inhibiting cholesterol synthesis

Treatment of Hypercholesterolemia Cholestyramine and other drugs that increase elimination of bile salts force the liver to increase their synthesis from cholesterol, thus lowering the internal level of cholesterol in the hepatocytes. Decreased cholesterol within the cell increases LDL receptor expression, allowing the hepatocyte to remove more LDL cholesterol from the blood. HMG-CoA reductase inhibitors such as lovastatin and simvastatin inhibit de novo cholesterol synthesis in the hepatocyte, which subsequently increases LDL receptor expression. [Pg.219]

Despite inhibition of HMG-CoA reductase by statins, cells compensate by increasing enzyme expression several fold. However, the total body cholesterol is reduced by 20-40% due to increased expression of LDL-receptors after statin administration this enhances LDL (the major cholesterol carrying lipoprotein) clearance from serum with a net reduction of serum cholesterol (Chapter 20). Individuals who lack functional LDL-receptors (homozygous familial hypercholesterolemia. Chapter 20) do not benefit from statin therapy. However, statin therapy is useful in the treatment of heterozygous familial hypercholesterolemia. Since HMG-CoA reductase plays a pivotal role in the synthesis of many products vital for cellular metabolism, inhibitors of the enzyme may have toxic effects. Monitoring of liver and muscle function may be necessary to detect any toxicity of statin drug therapy. A decreased risk of bone fractures with statin therapy has been observed in subjects age 50 years or older, who are being treated for hypercholesterolemia. The mechanism of action of statins in bone metabolism may involve inhibition of prenylation... [Pg.419]

Lovastatin is a member of a class of drugs (atorvastatin and simvastatin are others in this class) called statins that are used to treat hypercholesterolemia. The statins act as competitive inhibitors of the enzyme HMG-CoA reductase. These molecules mimic the structure of the normal substrate of the enzyme (HMG-CoA) and act as transition state analogues. While the statins are bound to the enzyme, HMG-CoA cannot be converted to mevalonic acid, thus inhibiting the whole cholesterol biosynthetic process. Recent studies indicate that there may be important secondary effects of statin therapy because some of the medical benefits of statins are too rapid to be a result of decreasing atherosclerotic lesions. Statin therapy has been associated with reduced risks of dementia, Alzheimer disease, ischemic cerebral stroke, and other diseases that are not correlated with high cholesterol levels. Although this is still an active area of research, it appears that the pleiotropic effects of statins may be a result of a reduction in the synthesis of isoprenoid intermediates that are formed in the pathway of cholesterol biosynthesis. [Pg.315]


See other pages where Hypercholesterolemia drugs inhibiting cholesterol synthesis is mentioned: [Pg.241]    [Pg.827]    [Pg.89]    [Pg.827]    [Pg.289]    [Pg.905]    [Pg.179]    [Pg.181]    [Pg.442]    [Pg.433]    [Pg.439]    [Pg.277]    [Pg.511]    [Pg.351]   
See also in sourсe #XX -- [ Pg.240 ]




SEARCH



Cholesterol drugs

Cholesterol synthesis

Cholesterol synthesis inhibition

Hypercholesterolemia

Synthesis inhibition

© 2024 chempedia.info