Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

3- Hydroxy-3-methylglutaryl-CoA HMG

The ketone bodies (acetoacetate, 3-hydroxybutyrate, and acetone) are formed in hepatic mitochondria when there is a high rate of fatty acid oxidation. The pathway of ketogenesis involves synthesis and breakdown of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) by two key enzymes, HMG-CoA synthase and HMG-GoA lyase. [Pg.189]

It has been found that the 3-hydroxy-3-methylglutaryl-CoA (HMG CoA) inhibitors statins (atorvastatin, pravastatin, and cerivastatin), widely prescribed cholesterol-lowering agents, are able to inhibit phorbol ester-stimulated superoxide formation in endothelial-intact segments of the rat aorta [64] and suppress angiotensin II-mediated free radical production [65]. Delbose et al. [66] found that statins inhibited NADPH oxidase-catalyzed PMA-induced superoxide production by monocytes. It was suggested that statins can prevent or limit the involvement of superoxide in the development of atherosclerosis. It is important that statin... [Pg.920]

The therapeutic class that uniquely exemplifies lactone prodrugs are the statins, i.e., the cholesterol-lowering agents that act by inhibiting 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (EC 1.1.1.34). This microsomal enzyme catalyzes conversion of HMG-CoA to mevalonate, an important rate-limiting step in cholesterol biosynthesis. Cholesterol synthesis occurs mainly... [Pg.510]

Figure 9-4. Metabolism of the branched-chain amino acids. The first two reactions, transamination and oxidative decarboxylation, are catalyzed by the same enzyme in all cases. Details are provided only for isoleucine. Further metabolism of isoleucine and valine follows a common pathway to propionyl CoA. Subsequent steps in the leucine degradative pathway diverge to yield acetoacetate. An intermediate in the pathway is 3-hydroxy-3-methylglutaryl CoA (HMG-CoA), which is a precursor for cytosolic cholesterol biosynthesis. Figure 9-4. Metabolism of the branched-chain amino acids. The first two reactions, transamination and oxidative decarboxylation, are catalyzed by the same enzyme in all cases. Details are provided only for isoleucine. Further metabolism of isoleucine and valine follows a common pathway to propionyl CoA. Subsequent steps in the leucine degradative pathway diverge to yield acetoacetate. An intermediate in the pathway is 3-hydroxy-3-methylglutaryl CoA (HMG-CoA), which is a precursor for cytosolic cholesterol biosynthesis.
Healthy, well-nourished individuals produce ketone bodies at a relatively low rate. When acetyl-CoA accumulates (as in starvation or untreated diabetes, for example), thiolase catalyzes the condensation of two acetyl-CoA molecules to acetoacetyl-CoA, the parent compound of the three ketone bodies The reactions of ketone body formation occur in the matrix of liver mitochondria. The six-carbon compound /3-hydroxy-/3-methylglutaryl-CoA (HMG-CoA) is also an intermediate of sterol biosynthesis, but the enzyme that forms HMG-CoA in that pathway is cytosolic. HMG-CoA lyase is present only in the mitochondrial matrix. [Pg.651]

The second five-carbon branched unit, in which the branch is one carbon further down the chain, is an intermediate in the biosynthesis of polyprenyl (isoprenoid) compounds and steroids. Three two-carbon units are used as the starting material with decarboxylation of one unit. Two acetyl units are first condensed to form acetoacetyl-CoA. Then a third acetyl unit, which has been transferred from acetyl-CoA onto an SH group of the enzyme, is combined with the acetoacetyl-CoA through an ester condensation. The thioester linkage to the enzyme is hydrolyzed to free the product 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). This sequence is illustrated in Eq. 17-5. The thioester group of HMG-CoA is reduced to the... [Pg.992]

The sequence of cholesterol biosynthesis begins with a condensation in the cytosol of two molecules of acetyl-CoA in a reaction catalyzed by thiolase (fig. 20.3). The next step requires the enzyme /3-hydroxy-/3-methylglutaryl-CoA (HMG-CoA) synthase. This enzyme catalyzes the condensation of a third acetyl-CoA with /3-ketobutyryl-CoA to yield HMG-CoA. HMG-CoA is then reduced to mevalonate by HMG-CoA reductase. The activity of this reductase is primarily responsible for control of the rate of cholesterol biosynthesis. [Pg.461]

One class of antihyperlipidemic drugs is the statins. Statins interfere with the biosynthesis of cholesterol (A.103) and specifically inhibit the enzyme 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (Scheme A.l). The statins that have been approved by the FDA include lovastatin (Mevacor, A.104), simvastatin (Zocor, A.105), pravastatin (Prava-chol, A.106), atorvastatin (Lipitor, A.107), rosuvastatin (Crestor, A.108), and fluvastatin (Lescol, A.109) (Figure A.29). All six compounds are drawn here to highlight the similarities between HMG-CoA (A.99) and mevalonic acid (A.100), and the top portion of the various statins. As a class, the statins have been extremely successful in terms of sales and effective in decreasing LDL cholesterol levels in the blood. [Pg.373]

Two molecules of acetyl CoA initially condense to form acetoacetyl CoA in a reaction which is essentially the reverse of the thiolysis step in (3-oxidation. The acetoacetyl CoA reacts with another molecule of acetyl CoA to form 3-hydroxy-3-methylglutaryl CoA (HMG CoA) (Fig. 5). This molecule is then cleaved to form acetoacetate and acetyl CoA. (HMG CoA is also the starting point for cholesterol biosynthesis see Topic K5.) The acetoacetate is then either reduced to D-3-hydroxybutyrate in the mitochondrial matrix or undergoes a slow, spontaneous decarboxylation to acetone (Fig. 5). In diabetes, acetoacetate is produced faster than it can be metabolized. Hence untreated diabetics have high levels of ketone bodies in their blood, and the smell of acetone can often be detected on their breath. [Pg.320]

The first stage in the synthesis of cholesterol is the formation of isopentenyl pyrophosphate Fig. 1). Acetyl CoA and acetoacetyl CoA combine to form 3-hydroxy-3-methylglutaryl CoA (HMG CoA). This process takes place in the liver, where the HMG CoA in the mitochondria is used to form ketone bodies during starvation (see Topic K2), whereas that in the cytosol is used to synthesize cholesterol in the fed state (under the influence of cholesterol). HMG CoA is then reduced to mevalonate by HMG CoA reductase Fig. 1). This is the committed step in cholesterol biosynthesis and is a key control point. Mevalonate is converted into 3-isopentenyl pyrophosphate by three consecutive reactions each involving ATP, with C02 being released in the last reaction Fig. 1). [Pg.334]

Hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase is the rate-limiting enzyme in the cholesterol biosynthetic pathway (Fig. 1). In contrast to desmosterol and other late-stage lipid-soluble intermediates, HMG is water-soluble, and there are alternative metabolic pathways for its breakdown when HMG-CoA reductase is inhibited so that there is no buildup of potentially toxic precursors. Therefore, of the more than 30 enzymes involved in the biosynthesis of cholesterol, HMG-CoA reductase was a natural target. Substances that have a powerful inhibitory effect on this enzyme, including ML236B (compactin), were first discovered by Endo in a fermentation broth of Penicillium citrinum in the... [Pg.80]

In the initial reactions of the biosynthetic pathway, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) is formed from acetyl-CoA by the action of thiolase and HMG-CoA synthase in the cytosol of the liver cell. [Pg.388]

Figure 6.4 De novo synthesis of cholesterol. Pathway of cholesterol biosynthesis. Synthesis begins with the transport of acetyl-CoA from the mitochondrion to the cytosol. The rate-limiting step occurs at the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase catalysed step. The phosphorylation reactions are required to solubilise the isoprenoid intermediates in the pathway. Intermediates in the pathway are used for the synthesis of prenylated proteins, dolichol, coenzyme Q and the side chain of haem a. Figure 6.4 De novo synthesis of cholesterol. Pathway of cholesterol biosynthesis. Synthesis begins with the transport of acetyl-CoA from the mitochondrion to the cytosol. The rate-limiting step occurs at the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase catalysed step. The phosphorylation reactions are required to solubilise the isoprenoid intermediates in the pathway. Intermediates in the pathway are used for the synthesis of prenylated proteins, dolichol, coenzyme Q and the side chain of haem a.
The classic route for the formation of the C5 building blocks of terpenoid bios)mthesis in plants is via the reactions of the mevaionate pathway, first demonstrated in yeast and mammals. This well-characterized sequence (Fig. 5.3) involves the stepwise condensation of three molecules of acetyl coenz)mie A (AcCoA) to form the branched C6 compound, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Following the reduction of HMG-CoA to mevalonic acid, two successive phosphorylations and a decarboxylationelimination yield the C5 compound, IFF. [Pg.265]

Acetoacetate is formed from acetyl CoA in three steps (Figure 22.19). Two molecules of acetyl CoA condense to form acetoacetyl CoA. This reaction, which is catalyzed hy thiolase, is the reverse of the thiolysis step in the oxidation of fatty acids. Acetoacetyl CoA then reacts with acetyl CoA and water to give 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) and CoA. This condensation resembles the one catalyzed by citrate synthase (Section 17.13). This reaction, which has a favorable equilibrium owing to the hydrolysis of a thioester linkage, compensates for the unfavorable equilibrium in the formation of acetoacetyl CoA. 3-Hydroxy-3-methylglutaryl CoA is then cleaved to acetyl CoA and acetoacetate. The sum of these reactions is... [Pg.913]

There has been continued interest in the formation of 3-hydroxy-3-methylglutaryl-CoA [HMG-CoA, (2)] and the reduction of this to mevalonate (MVA), a step that is essentially irreversible and rate-limiting in terpenoid... [Pg.176]


See other pages where 3- Hydroxy-3-methylglutaryl-CoA HMG is mentioned: [Pg.833]    [Pg.1074]    [Pg.1074]    [Pg.674]    [Pg.220]    [Pg.170]    [Pg.194]    [Pg.218]    [Pg.218]    [Pg.920]    [Pg.946]    [Pg.418]    [Pg.418]    [Pg.18]    [Pg.374]    [Pg.182]    [Pg.334]    [Pg.170]    [Pg.751]    [Pg.115]    [Pg.1074]    [Pg.659]    [Pg.1074]    [Pg.1074]    [Pg.905]    [Pg.75]   


SEARCH



3 -Hydroxy-3 -methylglutaryl

3-Hydroxy-3-methylglutaryl-CoA

3-Hydroxy-3-methylglutaryl-CoA synthase (HMG

3-methylglutaryl

HMG-CoA

© 2024 chempedia.info