Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxides carbon monoxide complexes

The phase-transfer catalysed reaction of nickel tetracarbonyl with sodium hydroxide under carbon monoxide produces the nickel carbonyl dianions, Ni,(CO) 2- and Ni6(CO)162, which convert allyl chloride into a mixture of but-3-enoic and but-2-enoic acids [18]. However, in view of the high toxicity of the volatile nickel tetracarbonyl, the use of the nickel cyanide as a precursor for the carbonyl complexes is preferred. Pretreatment of the cyanide with carbon monoxide under basic conditions is thought to produce the tricarbonylnickel cyanide anion [19], as the active metal catalyst. Reaction with allyl halides, in a manner analogous to that outlined for the preparation of the arylacetic acids, produces the butenoic acids (Table 8.7). [Pg.374]

Carbonvlation of Benzyl Halides. Several organometallic reactions involving anionic species in an aqueous-organic two-phase reaction system have been effectively promoted by phase transfer catalysts(34). These include reactions of cobalt and iron complexes. A favorite model reaction is the carbonylation of benzyl halides using the cobalt tetracarbonyl anion catalyst. Numerous examples have appeared in the literature(35) on the preparation of phenylacetic acid using aqueous sodium hydroxide as the base and trialkylammonium salts (Equation 1). These reactions occur at low pressures of carbon monoxide and mild reaction temperatures. Early work on the carbonylation of alkyl halides required the use of sodium amalgam to generate the cobalt tetracarbonyl anion from the cobalt dimer(36). [Pg.146]

The previous extension of solvent mixtures involved solvent interfaces. This organic-water interfacial technique has been successfully extended to the synthesis of phenylacetic and phenylenediacetic acids based on the use of surface-active palla-dium-(4-dimethylaminophenyl)diphenylphosphine complex in conjunction with dode-cyl sodium sulfate to effect the carbonylation of benzyl chloride and dichloro-p-xylene in a toluene-aqueous sodium hydroxide mixture. The product yields at 60°C and 1 atm are essentially quantitative based on the substrate conversions, although carbon monoxide also undergoes a slow hydrolysis reaction along with the carbonylation reactions. The side reaction produces formic acid and is catalyzed by aqueous base but not by palladium. The phosphine ligand is stable to the carbonylation reactions and the palladium can be recovered quantitatively as a compact emulsion between the organic and aqueous phases after the reaction, but the catalytic activity of the recovered palladium is about a third of its initial activity due to product inhibition (Zhong et al., 1996). [Pg.73]

Reductive decarboxylation of (20) yields C02, H+, and a Co(I) species at a measurable rate (94). In the presence of CO, the starting cobalt complex is regenerated, and a catalytic system for the oxidation of CO by ferricyanide is established. It is significant that in this system the metal-carbonyl bond is formed when the cobalt is in a reduced state. It is the subsequent oxidation of the cobalt by electron transfer that activated the carbonyl to attack by water or hydroxide. That this activation results in a weaker metal-carbonyl bond is evident since the Co(III)-carbonyl may be hydrolyzed in acidic solution with loss of the carbon monoxide ligand (94). [Pg.110]

The final type of aqueous ionic equilibrium we consider involves a different kind of ion than we ve examined up to now. A simple ion, such as Na" " or S04 , consists of one or a few bound atoms, with an excess or deficit of electrons. A complex ion consists of a central metal ion covalently bonded to two or more anions or molecules, called ligands. Hydroxide, chloride, and cyanide ions are some ionic ligands water, carbon monoxide, and ammonia are some molecular ligands. In the complex ion Cr(NH3)6, for example, Cr is the central metal ion and six NH3 molecules are the ligands, giving an overall 3-1- charge (Figure 19.13). [Pg.641]

Traditionally, oxalic acid has been extracted from natural products by treating them with an alkaline solution, followed by crystallization of the acid. Sodium hydroxide is the alkaline material most commonly used for this procedure. Today, a number of methods are available for the commercial preparation of oxalic acid. In one procedure, carbon monoxide gas is bubbled through a concentrated solution of sodium hydroxide to produce oxalic acid. Alternatively, sodium formate (COONa) is heated in the presence of sodium hydroxide or sodium carbonate to obtain the acid. Another popular method of preparing oxalic acid involves the oxidation of sucrose (common table sugar) or more complex carbohydrates using nitric acid as a catalyst. The reaction results in the formation of oxalic acid and water as the primary products. [Pg.526]

As many carbonate complexes are synthesized usually in aqueous solution under fairly alkaline conditions, the possibility of contamination by hydroxy species is often a problem. To circumvent this, the use of bicarbonate ion (via saturation of sodium carbonate solution with COj) rather than the carbonate ion can often avoid the precipitation of these contaminants. Many other synthetic methods use carbon dioxide as their starting point. Transition metal hydroxo complexes are, in general, capable of reacting with CO2 to produce the corresponding carbonate complex. The rate of CO2 uptake, which depends upon the nucleophilicity of the OH entity, proceeds by a mechanism that can be regarded as hydroxide addition across the unsaturated C02. There are few non-aqueous routes to carbonate complexes but one reaction (3), illustrative of a synthetic pathway of great potential, is that used to prepare platinum and copper complexes. Ruthenium and osmium carbonate complexes result from the oxidation of coordinated carbon monoxide by dioxygen insertion (4). ... [Pg.1094]


See other pages where Hydroxides carbon monoxide complexes is mentioned: [Pg.170]    [Pg.172]    [Pg.181]    [Pg.204]    [Pg.210]    [Pg.211]    [Pg.365]    [Pg.385]    [Pg.242]    [Pg.457]    [Pg.110]    [Pg.281]    [Pg.508]    [Pg.640]    [Pg.1133]    [Pg.286]    [Pg.465]    [Pg.111]    [Pg.448]    [Pg.670]    [Pg.36]    [Pg.945]    [Pg.50]    [Pg.1211]    [Pg.536]    [Pg.167]    [Pg.99]    [Pg.508]    [Pg.640]    [Pg.444]    [Pg.153]    [Pg.457]    [Pg.139]    [Pg.49]    [Pg.604]    [Pg.249]    [Pg.547]    [Pg.567]    [Pg.1211]    [Pg.92]    [Pg.281]    [Pg.4665]    [Pg.6006]   
See also in sourсe #XX -- [ Pg.2 , Pg.342 ]




SEARCH



1 monoxide complexes

Carbon complex

Carbon hydroxide

Carbonate complexation

Carbonate) complexes

Hydroxide carbonates

Hydroxide complexes

© 2024 chempedia.info