Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogenation nitroso compounds

Nitroso compounds are formed selectively via the oxidation of a primary aromatic amine with Caro s acid [7722-86-3] (H2SO ) or Oxone (Du Pont trademark) monopersulfate compound (2KHSO KHSO K SO aniline black [13007-86-8] is obtained if the oxidation is carried out with salts of persulfiiric acid (31). Oxidation of aromatic amines to nitro compounds can be carried out with peroxytrifluoroacetic acid (32). Hydrogen peroxide with acetonitrile converts aniline in a methanol solution to azoxybenzene [495-48-7] (33), perborate in glacial acetic acid yields azobenzene [103-33-3] (34). [Pg.230]

In catalytic hydrogenation, a compound is reduced with molecular hydrogen in the presence of a catalyst. This reaction has found appHcations in many areas of chemistry including the preparation of amines. Nitro, nitroso, hydroxylamino, azoxy, azo, and hydrazo compounds can all be reduced to amines by catalytic hydrogenation under the right conditions. Nitriles, amides, thioamides, and oximes can also be hydrogenated to give amines (1). Some examples of these reactions foUow ... [Pg.257]

Nitroso compounds are oxidized to nitro compounds by hydrogen peroxide and dinitragen tetroxide [S2] (equation 74)... [Pg.347]

Reductive alkylations have been carried out successfully with compounds that are not carbonyls or amines, but which are transformed during the hydrogenation to suitable functions. Azides, azo, hydrazo, nitro and nitroso compounds, oximes, pyridines, and hydroxylamines serve as amines phenols, acetals, ketals, or hydrazones serve as carbonyls 6,7,8,9,12,17,24,41,42,58). Alkylations using masked functions have been successful at times when use of unmasked functions have failed (2). In a synthesis leading to methoxatin, a key... [Pg.88]

Aromatic nitro compounds are hydrogenated very easily aliphatic nitro compounds considerably more slowly. Hydrogenations have been carried out successfully under a wide range of conditions including vapor phase (S9). Usually the goal of reduction is the amine, but at times the reduction is arrested at the intermediate hydroxylamine or oxime stage nitroso compounds never accumulate, although their transient presence may appreciably influence the course of reaction. In practice, nitro compounds often contain other reducible functions that are to be either maintained or reduced as well. [Pg.104]

C-Nitroso compounds with an a-hydrogen atom rearrange readily to the corresponding oxime (/7y) and perhaps to the unsaturated hydroxylamine 145). Reduction of these is discussed in the chapter on oximes. [Pg.173]

Aromatic nitroso compounds usually are considered to be intermediates in the hydrogenation of a nitroaromatic compound to the aromatic hydroxyl-amine or amine. However, nitroso compounds do not accumulate in these reductions, suggesting that they are reduced more easily than are nitro compounds. Catalysts effective for the nitro group should also be effective for nitroso. [Pg.173]

Formation of azo-type products might be troublesome. These by-products, arising from reduction of aromatic nitro compounds, usually are assumed to be derived from the coupling of intermediate nitroso and hydroxylamine compounds. The coupling problem is accentuated in reduction of nitroso compounds because of much higher concentrations. It can be alleviated by dropwise addition of the substrate to the hydrogenation and use of acidic media. [Pg.173]

In triethylamine instead of benzene the reaction products are completely different, and are indicative of a homolytic process involving an initial electron transfer from triethylamine followed by a hydrogen atom transfer. Scheme 10-68 gives the major products, namely 1,3,5-tri-tert-butylbenzene (10.36, 20%), the oxime 10.39 (18%), formed from the nitroso compound 10.38, and the acetanilide 10.37 (40%). ESR and CIDNP data are consistent with Scheme 10-68. In their paper the authors discuss further products which were found in smaller yields. [Pg.256]

Nitroso-Oxime Tautomerism. This equilibrium lies far to the right, and as a rule nitroso compounds are stable only when there is not a hydrogen. [Pg.76]

Carbons adjacent to a Z group (as defined on p. 548) can be nitrosated with nitrous acid or alkyl nitrites. The initial product is the C-nitroso compound, but these are stable only when there is no tautomerizable hydrogen. When there is, the product is the more stable oxime. The situation is analogous to that with azo compounds and hydrazones (12-7). The mechanism is similar to that in 12-7 R—H —> R + N=0 — R—N=0. The attacking species is either NO or a carrier of it. When the substrate is a simple ketone, the mechanism goes through the enol (as in halogenation 12-4) ... [Pg.780]

Imines can be prepared in a similar manner by treatment of an active hydrogen compound with a nitroso compound ... [Pg.780]

There are three possible products when NOCl is added to alkenes. The initial product is always the [3-halo nitroso compound, but these are stable only if the carbon bearing the nitrogen has no hydrogen. If it has, the nitroso compound tautomerizes to the oxime ... [Pg.1046]

With some alkenes, the initial p-halo nitroso compound is oxidized by the NOCl to a P-halo nitro compound. Many functional groups can be present without interference (e.g., COOH, COOR, CN, OR). The mechanism in most cases is probably simple electrophilic addition, and the addition is usually anti, though syn addition has been reported in some cases. Markovnikov s rule is followed, the positive NO going to the carbon that has more hydrogens. [Pg.1046]

Studies of the hydrogenation of aromatic nitroso compounds have rarely been published. One of the earliest studies is the Pd/C catalyzed hydrogenation of p-nitrosothymol to its corresponding amine (100%) in ethanol at 1 atm hydrogen.289 Useful antioxidants and gasoline stabilizers are made from diamines, which can be produced by hydrogenating their relatively easily formed nitroso derivatives.290 As a result, the hydrogenation of 4-nitroso-diphenylamine has been studied more heavily than others.291-293... [Pg.79]

Other methods of reducing the nitroso compound include the use of ammonium sulfide4 and hydrogenation utilizing Adams catalyst.5... [Pg.67]

N-Nitroso compounds have been found to exist as syn and anti rotamers [30, 31] due to restricted rotation of the N-N bond resulting from nitrogen lone-pair delocalization (Fig. 3.2). This delocalization causes the hydrogens at the a-carbons to become acidic as evident by their base-catalyzed reactions, such as exchange with deuterium... [Pg.56]

Acyl nitroso compounds (3, Scheme 7.2) contain a nitroso group (-N=0) directly attached to a carbonyl carbon. Oxidation of an N-acyl hydroxylamine derivative provides the most direct method for the preparation of acyl C-nitroso compounds [10]. Treatment of hydroxamic acids, N-hydroxy carbamates or N-hydroxyureas with sodium periodate or tetra-alkyl ammonium periodate salts results in the formation of the corresponding acyl nitroso species (Scheme 7.2) [11-14]. Other oxidants including the Dess-Martin periodinane and both ruthenium (II) and iridium (I) based species efficiently convert N-acyl hydroxylamines to the corresponding acyl nitroso compounds [15-18]. The Swern oxidation also provides a useful alternative procedure for the oxidative preparation of acyl nitroso species [19]. Horseradish peroxidase (HRP) catalyzed oxidation of N-hydroxyurea with hydrogen peroxide forms an acyl nitroso species, which can be trapped with 1, 3-cyclohexanone, giving evidence of the formation of these species with enzymatic oxidants [20]. [Pg.179]

In the solid state almost all nitroso-compounds are colourless,1 but when fused or in solution they are blue or green. Determinations of the molecular weight of nitrosobenzene in liquid hydrogen cyanide have shown (Piloty) that the colourless form is bimolecular. The NO-groups of two molecules are loosely united in one of the ways indicated by the following formulae ... [Pg.180]

An analogous reaction is known with aromatic nitroso-compounds, but for it an exceptionally mobile hydrogen atom must be present in the ketone and hence no condensation occurs with simple ketones such Us acetone. The products of the reaction are, of course, azomethines. This condensation has made possible the synthesis of 1 2 3-triketones (F. Sachs), e.g. [Pg.181]

With concentrated mineral acids azobenzene gives red salts, as may be shown by pouring hydrochloric acid on it. Addition of hydrogen leads to the re-formation of the hydrazo-compound. Oxygen is added on and the azoxy-compound formed by the action of hydrogen peroxide or nitric acid. The synthesis of asymmetrical aromatic azo-compounds from nitroso-compounds and primary amines was discussed above. [Pg.185]


See other pages where Hydrogenation nitroso compounds is mentioned: [Pg.492]    [Pg.277]    [Pg.109]    [Pg.198]    [Pg.260]    [Pg.240]    [Pg.13]    [Pg.745]    [Pg.920]    [Pg.478]    [Pg.461]    [Pg.151]    [Pg.701]    [Pg.1463]    [Pg.1539]    [Pg.60]    [Pg.62]    [Pg.180]    [Pg.6]    [Pg.22]    [Pg.4]    [Pg.269]    [Pg.339]    [Pg.448]    [Pg.579]    [Pg.1171]   


SEARCH



Compounds hydrogen

Hydrogenated compounds

Hydrogenation compounds

Hydrogenous compounds

Nitroso compounds

Nitroso hydrogenation

© 2024 chempedia.info