Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen supported catalysis

Recently, it has been shown that ultrasonic agitation during hydrogenation reactions over skeletal nickel can slow catalyst deactivation [122-124], Furthermore, ultrasonic waves can also significantly increase the reaction rate and selectivity of these reactions [123,124], Cavitations form in the liquid reaction medium because of the ultrasonic agitation, and subsequently collapse with intense localized temperature and pressure. It is these extreme conditions that affect the chemical reactions. Various reactions have been tested over skeletal catalysts, including xylose to xylitol, citral to citronellal and citronellol, cinnamaldehyde to benzenepropanol, and the enantioselective hydrogenation of 1-phenyl-1,2-propanedione. Ultrasound supported catalysis has been known for some time and is not peculiar to skeletal catalysts [125] however, research with skeletal catalysts is relatively recent and an active area. [Pg.151]

Kugai, J., Velu, S., and Song, C. Low-temperature reforming of ethanol over Ce02-supported Ni-Rh bimetallic catalysts for hydrogen production. Catalysis Letters, 2005, 101 (3), 255. [Pg.125]

Chiodo, V., Freni, S., Galvagno, A., MondeUo, N., Frusteri, F. (2010). Catalytic features of Rh and Ni supported catalysts in the steam refomiing of glycerol to produce hydrogen. Applied Catalysis A General, 381, 1—7. [Pg.264]

H.I. Zeliger, Preparation of supported nohle metal blacks hy wet hydrogen reduction. Catalysis 7 (1967) 209-213. [Pg.485]

The mechanism and rate of hydrogen peroxide decomposition depend on many factors, including temperature, pH, presence or absence of a catalyst (7—10), such as metal ions, oxides, and hydroxides etc. Some common metal ions that actively support homogeneous catalysis of the decomposition include ferrous, ferric, cuprous, cupric, chromate, dichromate, molybdate, tungstate, and vanadate. For combinations, such as iron and... [Pg.471]

Base catalysis is most effective with alkali metals dispersed on solid supports or, in the homogeneous form, as aldoxides, amides, and so on. Small amounts of promoters form organoalkali comnpounds that really contribute the catalytic power. Basic ion exchange resins also are usebil. Base-catalyzed processes include isomerization and oligomerization of olefins, reactions of olefins with aromatics, and hydrogenation of polynuclear aromatics. [Pg.2094]

CS indicated that the enolate of acetyl-CoA is significantly more stable than the enol or a proton-sharing enolic form and thus do not support the proposal that a low barrier hydrogen bond is involved in catalysis in CS. This study demonstrates the practial application of high level QM-MM studies to the elucidation of mechanistic details of an enzymatic reaction that are otherwise unclear. [Pg.234]

Ionic liquids have already been demonstrated to be effective membrane materials for gas separation when supported within a porous polymer support. However, supported ionic liquid membranes offer another versatile approach by which to perform two-phase catalysis. This technology combines some of the advantages of the ionic liquid as a catalyst solvent with the ruggedness of the ionic liquid-polymer gels. Transition metal complexes based on palladium or rhodium have been incorporated into gas-permeable polymer gels composed of [BMIM][PFg] and poly(vinyli-dene fluoride)-hexafluoropropylene copolymer and have been used to investigate the hydrogenation of propene [21]. [Pg.266]

EfiBdent hydrogen supply iiom decalin was only accomplished by the si terheated liquid-film-type catalysis under reactive distillation conditions at modaate heating tempaatures of 210-240°C. Caibcm-supported nano-size platinum-based catalysts in the si ietheated liquid-film states accelerated product desorption fixjm file catalyst surface due to its temperature gradient under boiling conditions, so that both hi reaction rates and conversions were obtained simultaneously. [Pg.177]

The alkyls Tp Cr-R are the best test case yet of the catalytic activity of CrU alkyls (see Section 1). However, they did not react with ethylene, even at elevated temperature. On the contrary, Tp - Cr-Et eventually decomposed by an apparent P-hydrogen elimination yielding Tp - Cr-H and ethylene. Thus our notion that divalent chromium alkyls are not the chain propagating species in polymerization catalysis receives further support... [Pg.158]

Supported iron catalysts are notoriously difficult to reduce [6-8] and thus a substantial fraction of the iron can be expected to remain inactive for the catalysis of hydrogenation. Particular attention has therefore been paid to the preparation of Fe/MgO catalysts by several different methods and examination of their effectiveness in producing metallic iron of adequate specific surface area after reduction in hydrogen. The activity and selectivity for primary amine formation have been determined for the hydrogenation of ethanenitrile (acetonitrile) and propanenitrile. [Pg.258]

It is evident that the supported clusters have a strong affinity for hydride ligands provided by the support. The process by which the support delivers these ligands is referred to in the catalysis literature as reverse hydrogen spillover. The opposite process (spillover), well known for supported metals [36], is shown by the theoretical results to be a redox process in reverse spillover, the support hydroxyl groups oxidize the cluster. [Pg.223]

Mikroreaktoren sind so klein wie ein Fingerhut, Handdsblatt, May 1998 Steep progress in microelectronics, sensor and analytical techniques in the past transport intensification for catalysis first catalytic micro reactors available partial oxidation to acrolein partial hydrogenation to cyclododecene anodically oxidized catalyst supports as alternatives to non-porous supports study group on micro reactors at Dechema safety, selectivity, high pressure exclusion of using particle solutions limited experience with lifetime of micro reactors [236],... [Pg.91]


See other pages where Hydrogen supported catalysis is mentioned: [Pg.108]    [Pg.287]    [Pg.108]    [Pg.248]    [Pg.226]    [Pg.226]    [Pg.1]    [Pg.17]    [Pg.326]    [Pg.35]    [Pg.261]    [Pg.167]    [Pg.863]    [Pg.250]    [Pg.137]    [Pg.82]    [Pg.114]    [Pg.265]    [Pg.2093]    [Pg.2372]    [Pg.697]    [Pg.138]    [Pg.487]    [Pg.265]    [Pg.103]    [Pg.575]    [Pg.6]    [Pg.563]    [Pg.226]    [Pg.227]    [Pg.229]    [Pg.552]    [Pg.37]    [Pg.38]    [Pg.39]   
See also in sourсe #XX -- [ Pg.282 , Pg.283 ]




SEARCH



Catalysis hydrogenation

Catalysis supports

Hydrogen supported

Supported catalysis

© 2024 chempedia.info