Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen process studies

In today s competitive climate, investigators cannot spend much time on the clarification of the kinetics for a new process. At Union Carbide Corporation in the 1970s the study to replace the old and not very efficient butyraldehyde hydrogenation was done in three months. In another three months a kinetic model was developed and simultaneously tested in an existing single tube in a pilot-plant (Cropley et al,1984). Seldom is a completely new process studied for which no similar example exists in the industry. [Pg.116]

Participation in the electrode reactions The electrode reactions of corrosion involve the formation of adsorbed intermediate species with surface metal atoms, e.g. adsorbed hydrogen atoms in the hydrogen evolution reaction adsorbed (FeOH) in the anodic dissolution of iron . The presence of adsorbed inhibitors will interfere with the formation of these adsorbed intermediates, but the electrode processes may then proceed by alternative paths through intermediates containing the inhibitor. In these processes the inhibitor species act in a catalytic manner and remain unchanged. Such participation by the inhibitor is generally characterised by a change in the Tafel slope observed for the process. Studies of the anodic dissolution of iron in the presence of some inhibitors, e.g. halide ions , aniline and its derivatives , the benzoate ion and the furoate ion , have indicated that the adsorbed inhibitor I participates in the reaction, probably in the form of a complex of the type (Fe-/), or (Fe-OH-/), . The dissolution reaction proceeds less readily via the adsorbed inhibitor complexes than via (Fe-OH),js, and so anodic dissolution is inhibited and an increase in Tafel slope is observed for the reaction. [Pg.811]

Based upon the above-mentioned assumptions, the reaction scheme in Figure 3.1 is reduced to the scheme shown in Figure 3.2A. It should be noted that active catalyst is used in the reaction scheme in Figure 3.1 while most asymmetric hydrogenation processes use a pre-catalyst (11). Hence, the relationship between the precatalyst and active catalyst needs to be established for the kinetic model. The precatalyst used in this study is [Et-Rh(DuPhos)(COD)]BF4 where COD is cyclooctadiene. The active catalyst (Xq) in Figure 3.2A is formed by removal of COD via hydrogenation, which is irreversible. We assume that the precatalyst is completely converted to the active catalyst Xq before the start of catalytic reaction. Hence, the kinetic model derived here does not include the formation of the active catalyst from precatalyst. [Pg.29]

A hydrogenation process for the preparation of 4,6-diamino resorcinol from 4,6-bisphenylazo resorcinol was studied and developed up to pilot scale. The high reaction rate together with the protection of the product against oxidation could ensure providing the addition of HCl was made after the fast hydrogenation period. Activity and lifetime of commercial catalysts were evaluated also. [Pg.127]

The depolymerized Nylon used in the hydrogenation process was obtained by the ammonolysis of a mixture of Nylon-6 and Nylon-6,6 (described elsewhere, see reference 2). Hydrogenation reactions were conducted in 300 cc stirred pressure vessels. For semi-batch reactions hydrogen was constantly replenished to the reactor from a 1L reservoir to maintain a reactor pressure of 500 psig and all of the reactions were conducted with the same operating parameters and protocol. In continuous stirred tank studies hydrogen flow was controlled using... [Pg.42]

The hydrogenation processes were performed at a relatively low temperature and pressure in the presence of promoted Raney Ni 2400 and Raney Co 2724 catalysts (13) in this study but any common nitrile hydrogenation catalysts (e.g. Fe, Ru, Rh, bulk or supported catalysts) could be used. The advantage of using a low temperature and pressure process is that it lowers the investment cost of an industrial process. Raney Ni 2400 is promoted with Cr and Raney Co 2724 is promoted with Ni and Cr. The particle sizes for both catalysts were in the range 25 - 55 pm. The BET surface area of Raney Ni 2400 and Raney Co 2724 are 140 m2/g and 76 m2/g, respectively, and the active surface area of the Ni and Co catalysts are 52 and 18 m2/g, respectively, based on CO chemisorption (Grace Davison Raney Technical Manual, 4th Edition, 1996). [Pg.43]

Much of the microscopic information that has been obtained about defect complexes that include hydrogen has come from IR absorption and Raman techniques. For example, simply assigning a vibrational feature for a hydrogen-shallow impurity complex shows directly that the passivation of the impurity is due to complex formation and not compensation alone, either by a level associated with a possibly isolated H atom or by lattice damage introduced by the hydrogenation process. The vibrational band provides a fingerprint for an H-related complex, which allows its chemical reactions or thermal stability to be studied. Further, the vibrational characteristics provide a benchmark for theory many groups now routinely calculate vibrational frequencies for the structures they have determined. [Pg.155]

Thus, the hydrogenation process is shown to produce a good current confinement and high quantum efficiency. The stability of these lasers is also a question of importance. If good thermal stability of hydrogen-acceptor complexes has been already observed in InP Zn for example (Chevallier et al., 1989), more studies are needed to evaluate the laser stability under operating conditions. [Pg.518]

Adsorption of acetic acid on Pt(lll) surface was studied the surface concentration data were correlated with voltammetric profiles of the Pt(lll) electrode in perchloric acid electrolyte containing 0.5 mM of CHoCOOH. It is concluded that acetic acid adsorption is associative and occurs without a significant charge transfer across the interface. Instead, the recorded currents are due to adsorption/desorption processes of hydrogen, processes which are much better resolved on Pt(lll) than on polycrystalline platinum. A classification of adsorption processes on catalytic electrodes and atmospheric methods of preparation of single crystal electrodes are discussed. [Pg.245]

After discussing in detail each step of the hydrogenation process, we will comment here on the computational studies of the full catalytic cycle. [Pg.100]

In the last part of the paper, filler-elastomer chemical interactions which are able to take place through surface functional groups or surface reactive hydrogens are studied. The effect exerted by the created filler-elastomer bonds in the reinforcement process is then discussed. [Pg.103]

The catalyst life might be improved. Several studies on isomerization and polymerization processes indicate that supercritical solvents can dissolve coke-precursors on the catalyst surface, and remove them before they can form actual coke, and this improves the catalyst life [33,34]. Since coke formation also occurs in hydrogenation processes, it is reasonable to believe that catalyst life can be improved also for supercritical single-phase hydrogenation. [Pg.505]


See other pages where Hydrogen process studies is mentioned: [Pg.560]    [Pg.561]    [Pg.204]    [Pg.14]    [Pg.40]    [Pg.134]    [Pg.509]    [Pg.242]    [Pg.187]    [Pg.102]    [Pg.281]    [Pg.201]    [Pg.65]    [Pg.329]    [Pg.17]    [Pg.105]    [Pg.60]    [Pg.841]    [Pg.578]    [Pg.1280]    [Pg.47]    [Pg.90]    [Pg.157]    [Pg.87]    [Pg.279]    [Pg.103]    [Pg.125]    [Pg.266]    [Pg.34]    [Pg.55]    [Pg.70]    [Pg.57]    [Pg.183]    [Pg.202]    [Pg.240]    [Pg.260]    [Pg.114]    [Pg.499]   
See also in sourсe #XX -- [ Pg.381 , Pg.382 , Pg.383 , Pg.384 , Pg.385 , Pg.386 , Pg.387 , Pg.388 ]




SEARCH



Computational Studies of Organocatalytic Processes Based on Hydrogen Bonding

Hydrogen processes

Hydrogen processing

Hydrogenation process

Hydrogenative process

Process Studied

Studies process study

© 2024 chempedia.info