Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen, polymerisation additions

Detailed studies of systems involving aluminium-based Lewis acids and hydrogen halides are scarce. Fontana and Kidder investigated the polymerisation of propene initiated by the pair aluminium bromideTiydrt n bromide. The cocatalytic role of the latter acid was clearly proved since no polymerisation could be detected in its absence. The dependence of the rate of polymerisation upon the cocatalyst concentration and the induction periods observed make this system similar to those in which stannic chloride induces the polymerisation of olefins in the presence of variable quantities of water (see Sect. IV-C-3-b). With relatively large quantities of added hydrogen bromide, addition of this acid to the mcmomer to give fso-propyl bromide must have constituted an important side reaction. [Pg.137]

TCA has been used to study degradation kinetics and various factors affecting thermal stability of polymers, such as crystallinity, molecular weight, orientation, tacticity, substitution of hydrogen atoms, grafting, co-polymerisation, addition of stabilisers, and so on. [Pg.39]

Acetaldehyde is a highly reactive compound exhibiting the general reactivity of aldehydes (qv). Acetaldehyde undergoes numerous condensation, addition, and polymerisation reactions under suitable conditions, the oxygen or any of the hydrogens can be replaced. [Pg.50]

Reaction between oxygen and butadiene in the Hquid phase produces polymeric peroxides that can be explosive and shock-sensitive when concentrated. Ir(I) and Rh(I) complexes have been shown to cataly2e this polymerisation at 55°C (92). These peroxides, which are formed via 1,2- and 1,4-addition, can be hydrogenated to produce the corresponding 1,2- or 1,4-butanediol [110-63-4] (93). Butadiene can also react with singlet oxygen in a Diels-Alder type reaction to produce a cycHc peroxide that can be hydrogenated to 1,4-butanediol. [Pg.343]

In addition, buffer salts such as disodium hydrogen phosphate may be used to prevent the pH of the aqueous phase falling during polymerisation. Small amounts of an anti-foam agent may be employed to reduce frothing when discharging from the vessel at the end of the polymerisation process. [Pg.316]

The chloride is usually (but not always) stabilised in storage by addition of aqueous alkali or anhydrous amines as acid acceptors. A 270 kg batch which was not stabilised polymerised violently when charged into a reactor. Contact of the chloride (slightly hydrolysed and acidic) with rust led to formation of ferric chloride which catalysed an intermolecular Friedel-Craft reaction to form polybenzyls with evolution of further hydrogen chloride. Contact of unstabilised benzyl chloride with aluminium, iron or rust should be avoided to obviate the risk of polycondensation. See Benzyl bromide Molecular sieve... [Pg.899]

Dienes, 11 addition to, 194-198 cisoid conformation, 197, 350 conjugated, 11 Cope rearrangement, 354 cycUsation, 346 cycloaddition to, 348 Diels-Alder reaction, 197, 349 excited state, 13 heat of hydrogenation, 16,194 isolated, 11 m.o.s of, 12 polymerisation, 323 Dienone intermediates, 356 Dienone/phenol rearrangement, 115 Dienophiles, 198, 350 Digonal hybridisation, 5 Dimedone, 202 Dimroth s Et parameter, 391 solvatochromic shifts, 391 solvent polarity, 391 Y and,392 Dinitrofluorobenzene proteins and, 172... [Pg.208]

Radical addition, 312-323 carbon tetrachloride, 320 halogens, 313 hydrogen bromide, 316 sulphenyl halides, 320 vinyl polymerisation, 320 Radical anions, 218 Radical rearrangements, 335 Radicals, 20, 30,299-339 acyl, 306, 330, 335 addition to 0==C, 313-323 alkoxyl, 303... [Pg.212]

One of the characteristic features of the metal-catalysed reaction of acetylene with hydrogen is that, in addition to ethylene and ethane, hydrocarbons containing more than two carbon atoms are frequently observed in appreciable yields. The hydropolymerisation of acetylene over nickel—pumice catalysts was investigated in some detail by Sheridan [169] who found that, between 200 and 250°C, extensive polymerisation to yield predominantly C4 - and C6 -polymers occurred, although small amounts of all polymers up to Cn, where n > 31, were also observed. It was also shown that the polymeric products were aliphatic hydrocarbons, although subsequent studies with nickel—alumina [176] revealed that, whilst the main products were aliphatic hydrocarbons, small amounts of cyclohexene, cyclohexane and aromatic hydrocarbons were also formed. The extent of polymerisation appears to be greater with the first row metals, iron, cobalt, nickel and copper, where up to 60% of the acetylene may polymerise, than with the second and third row noble Group VIII metals. With alumina-supported noble metals, the polymerisation prod-... [Pg.59]


See other pages where Hydrogen, polymerisation additions is mentioned: [Pg.69]    [Pg.1014]    [Pg.430]    [Pg.65]    [Pg.209]    [Pg.539]    [Pg.527]    [Pg.915]    [Pg.1014]    [Pg.467]    [Pg.299]    [Pg.296]    [Pg.489]    [Pg.68]    [Pg.40]    [Pg.117]    [Pg.176]    [Pg.299]    [Pg.364]    [Pg.367]    [Pg.915]    [Pg.1014]    [Pg.5]    [Pg.48]    [Pg.36]    [Pg.44]    [Pg.52]    [Pg.330]    [Pg.560]    [Pg.289]    [Pg.489]    [Pg.264]    [Pg.164]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Addition, hydrogenation

Additives, hydrogenated

Hydrogenative addition

Polymerisation addition

© 2024 chempedia.info