Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen cyanide metal complexes

Dehalogenation of monochlorotoluenes can be readily effected with hydrogen and noble metal catalysts (34). Conversion of -chlorotoluene to Ncyanotoluene is accompHshed by reaction with tetraethyl ammonium cyanide and zero-valent Group (VIII) metal complexes, such as those of nickel or palladium (35). The reaction proceeds by initial oxidative addition of the aryl haHde to the zerovalent metal complex, followed by attack of cyanide ion on the metal and reductive elimination of the aryl cyanide. Methylstyrene is prepared from -chlorotoluene by a vinylation reaction using ethylene as the reagent and a catalyst derived from zinc, a triarylphosphine, and a nickel salt (36). [Pg.53]

An approach to isobacteriochlorins1 ln-e makes use of Pd(II) or metal-free bilatrienes 1 as starting materials. Cyclization of the corresponding bilatriene derivatives is induced by base in the presence of palladium(II) or zinc(II) which exercise a template effect. Zinc can be readily removed from the cyclized macrotetracycles by acid whereas palladium forms very stable complexes which cannot be demetalated. Prior to the cyclization reaction, an enamine is formed by elimination of hydrogen cyanide from the 1-position. The nucleophilic enamine then attacks the electrophilic 19-position with loss of the leaving group present at the terminal pyrrole ring. [Pg.645]

Most low-valence metal complexes are generally deactivated by air and sometimes also by water. Carbon monoxide, hydrogen cyanide, and PH3 frequently act as poisons for these catalysts. Poisoning by strongly co-ordinating molecules occurs by formation of catalytically inert complexes. An example is the poisoning of Wilkinson s catalyst for alkene hydrogenation ... [Pg.114]

Cyanide-based metal finishing solutions usually operate at basic pH levels to avoid decomposition of the complexed cyanide and the formation of highly toxic hydrogen cyanide gas. [Pg.354]

Hydrogen cyanide (Table 15.1) is a colorless, flammable liquid or gas that boils at 25.7°C and freezes at minus 13.2°C. The gas rarely occurs in nature, is lighter than air, and diffuses rapidly. It is usually prepared commercially from ammonia and methane at elevated temperatures with a platinum catalyst. It is miscible with water and alcohol, but is only slightly soluble in ether. In water, HCN is a weak acid with the ratio of HCN to CN about 100 at pH 7.2, 10 at pH 8.2, and 1 at pH 9.2. HCN can dissociate into H+ and CN. Cyanide ion, or free cyanide ion, refers to the anion CN derived from hydrocyanic acid in solution, in equilibrium with simple or complexed cyanide molecules. Cyanide ions resemble halide ions in several ways and are sometimes referred to as pseudohalide ions. For example, silver cyanide is almost insoluble in water, as are silver halides. Cyanide ions also form stable complexes with many metals. [Pg.910]

X. Wu, X. Li, F. King, J. Xiao, Angew. Chem. Int. Ed. 2005, 44, 3407. Surprisingly, no direct references to cyanide inhibition of hydrogenation catalysts could be found. For a general reaction showing the swift reaction of a transition metal complex with cyanide as a means to isolate the ligand, see for ex-... [Pg.1515]

Cyanide occurs most commonly as hydrogen cyanide in water, although it can also occur as the cyanide ion, alkali and alkaline earth metal cyanides (potassium cyanide, sodium cyanide, calcium cyanide), relatively stable metallocyanide complexes (ferricyanide complex [Fe(CN)6]-3), moderately stable metallocyanide complexes (complex nickel and copper cyanide), or easily decomposable metallocyanide complexes (zinc cyanide [Zn(CN)2], cadmium cyanide [Cd(CN)2]). Hydrogen cyanide and cyanide ion combined are commonly termed free cyanide. The environmental fate of these cyanide compounds varies widely (Callahan et al. 1979). [Pg.168]

The alkali metal cyanides are very soluble in water. As a result, they readily dissociate into their respective anions and cations when released into water. Depending on the pH of the water, the resulting cyanide ion may then form hydrogen cyanide or react with various metals in natural water. The proportion of hydrogen cyanide formed from soluble cyanides increases as the water pH decreases. At pH <7, >99% of the cyanide ions in water is converted to hydrogen cyanide (Towill et al. 1978). As the pH increases, cyanide ions in the water may form complex metallocyanides in the presence of excess cyanides however, if metals are prevalent, simple metal cyanides are formed. Unlike water-soluble alkali metal cyanides, insoluble metal cyanides such as are not expected to degrade to hydrogen cyanide (Callahan et al. 1979). [Pg.169]

Metal cyanides are readily oxidised and those of some heavy metals show thermal instability. The covalent cyano group is endothermic, and hydrogen cyanide and many organic nitriles are unusually reactive under appropriate circumstances, and A-cyano derivatives are reactive or unstable. The class includes the groups 3-CYANOTRIAZENES, METAL CYANIDES (AND CYANO COMPLEXES) DIISOCYANIDE LIGANDS... [Pg.103]

Hydrogen cyanide is toxic because the cyanide ion has high affinity for metal ions and so binds to the metal-containing cellular respiratory enzymes. Heme proteins such as cytochrome oxidase are complexed, resulting in asphyxiation at the cell level. [Pg.281]

Because of its low acidity, hydrogen cyanide seldom adds to nonactivated multiple bonds. Catalytic processes, however, may be applied to achieve such additions. Metal catalysts, mainly nickel and palladium complexes, and [Co(CO)4]2 are used to catalyze the addition of HCN to alkenes known as hydrocyanation.l67 l74 Most studies usually apply nickel triarylphosphites with a Lewis acid promoter. The mechanism involves the insertion of the alkene into the Ni—H bond of a hydrido nickel cyanide complex to form a cr-alkylnickel complex173-176 (Scheme 6.3). The addition of DCN to deuterium-labeled compound 17 was shown to take place... [Pg.299]

Hydrogen cyanide can be added across olefins in the presence of Ni, Co, or Pd complexes (Scheme 56) (123). Conversion of butadiene to adiponitrile is a commercial process at DuPont Co. The reaction appears to occur via oxidative addition of hydrogen cyanide to a low-valence metal, olefin insertion to the metal-hydrogen bond, and reductive elimination of the nitrile product. The overall reaction proceeds with cis... [Pg.288]


See other pages where Hydrogen cyanide metal complexes is mentioned: [Pg.23]    [Pg.204]    [Pg.148]    [Pg.15]    [Pg.389]    [Pg.516]    [Pg.48]    [Pg.187]    [Pg.30]    [Pg.327]    [Pg.936]    [Pg.203]    [Pg.200]    [Pg.116]    [Pg.9]    [Pg.348]    [Pg.15]    [Pg.130]    [Pg.163]    [Pg.163]    [Pg.172]    [Pg.188]    [Pg.198]    [Pg.203]    [Pg.109]    [Pg.35]    [Pg.371]    [Pg.204]    [Pg.316]    [Pg.319]    [Pg.8]    [Pg.389]    [Pg.64]   
See also in sourсe #XX -- [ Pg.24 , Pg.25 , Pg.26 , Pg.27 ]




SEARCH



Cyanide complexes

Cyanides hydrogen cyanide

Cyanides metal complexes

Hydrogen complexes

Hydrogen cyanid

Hydrogen cyanide

Hydrogenation complexes

© 2024 chempedia.info