Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Platinum complexes hydroformylation

Tin, nitratodiphenyltris(dimethy) sulfoxide)-structure, 1,77 Tin, nitratotris(triphenyltin)-structure, 1, 47 Tin,tetrakis(acetato)-stereochemistry, 1,94 Tin, tetrakis(diethyldithiocarbamato)-angular parameters, 1, 57 Tin, tetrakis(ethyldithiocarbamato)-angular parameters, 1, 57 Tin, tetranitrato-stereochemistry, 1, 94 Tin, tri-n-butylmethoxy-, 3, 208 Tin alkoxides physical properties, 2, 346 Tin bromide, 3, 194 Tin bromide hydrate, 3,195 Tin carboxylates, 3, 222 mixed valence, 3, 222 Tin chloride, 3, 194 hydroformylation platinum complexes, 6, 263 Tin chloride dihydrate, 3,195 Tin complexes, 3, 183-223 acetyl ace tone... [Pg.235]

Styrene, a-ethyl-asymmetric hydroformylation catalysts, platinum complexes, 6, 266 asymmetric hydrogenation catalysts, rhodium complexes, 6, 250 Styrene, a-methyl-asymmetric carbonylation catalysis by palladium complexes, 6, 293 carbonylation... [Pg.226]

Platinum complexes [PtCl2(diphosphine)] and [PtCl(SnCl3)(diphosphine)] of the ferrocenyl diphosphine ligands (35a), (35b), and (36) have been synthesized. Complexes [PtCl2(35)] and [PtCl2(36)] have been structurally characterized by XRD. Both the preformed and the in situ catalysts have been used in the hydroformylation of styrene.112... [Pg.152]

Until recently, the hydroformylation using palladium had been scarcely explored as the activity of palladium stayed behind that of more active platinum complexes. The initiating reagents are often very similar to those of platinum, i.e., divalent palladium salts, which under the reaction conditions presumably form monohydrido complexes of palladium(II). A common precursor is (39). The mechanism for palladium catalysts is, therefore, thought to be the same as that for platinum. New cationic complexes of palladium that are highly active as hydroformylation catalysts were discovered by Drent and co-workers at Shell and commercial applications may be expected, involving replacement of cobalt catalysts. [Pg.153]

Platinum complexes with chiral phosphorus ligands have been extensively used in asymmetric hydroformylation. In most cases, styrene has been used as the substrate to evaluate the efficiency of the catalyst systems. In addition, styrere was of interest as a model intermediate in the synthesis of arylpropionic acids, a family of anti-inflammatory drugs.308,309 Until 1993 the best enantio-selectivities in asymmetric hydroformylation were provided by platinum complexes, although the activities and regioselectivities were, in many cases, far from the obtained for rhodium catalysts. A report on asymmetric carbonylation was published in 1993.310 Two reviews dedicated to asymmetric hydroformylation, which appeared in 1995, include the most important studies and results on platinum-catalogued asymmetric hydroformylation.80,81 A report appeared in 1999 about hydrocarbonylation of carbon-carbon double bonds catalyzed by Ptn complexes, including a proposal for a mechanism for this process.311... [Pg.166]

The cA-PtCl2(diphosphine)/SnCl2 constitutes the system mostly used in catalyzed hydroformylation of alkenes and many diphosphines have been tested. In the 1980s, Stille and co-workers reported on the preparation of platinum complexes with chiral diphosphines related to BPPM (82) and (83) and their activity in asymmetric hydroformylation of a variety of prochiral alkenes.312-314 Although the branched/normal ratios were low (0.5), ees in the range 70-80% were achieved in the hydroformylation of styrene and related substrates. When the hydroformylation of styrene, 2-ethenyl-6-methoxynaphthalene, and vinyl acetate with [(-)-BPPM]PtCl2-SnCl2 were carried out in the presence of triethyl orthoformate, enantiomerically pure acetals were obtained. [Pg.166]

The influence of steric and electronic effects of diphosphites (111) and (112) have been studied with regard to their catalytic performance on the hydroformylation of styrene catalyzed by platinum complexes. The highest chemoselectivity to aldehyde (71%) and regioselectivity to branched aldehyde (85%), with an enantiomeric excess of 86%, was obtained with the plat-inum(II)-SnCl2 catalytic system associated with ligand (25, 45)-bis(5)-(lll).340... [Pg.170]

Chiral bis-(binaphthophosphole) (bis(BNP)) ligands have been used in the asymmetric hydroformylation of styrene. In solution, the free diphospholes display fluxional behavior. Consistent with their structure, the reaction of the bis(BNP) compounds with platinum(II) derivatives gives either cis chelate mononuclear complexes or trans phosphorus-bridged polynuclear derivatives. Coordination to platinum enhances the conformational stability of bis(BNP)s and diastereomeric complexes can be detected in solution. In the presence of SnCl2, the platinum complexes give rise to catalysts that exhibit remarkable activity in the hydroformylation of styrene. Under optimum conditions, reaction takes place with high branched selectivity (80-85%) and moderate enantio-selectivity (up to 45% ee). [Pg.171]

Rhodium (I) complexes of chiral phosphines have been the archetypical catalysts for the hydrocarbonylation of 1-alkenes, with platinum complexes such as (61) making an impact also in the early 1990s[1461. More recently, rhodium(I)-chiral bisphosphites and phosphine phosphinites have been investigated. Quite remarkable results have been obtained with Rh(I)-BINAPHOS (62), with excellent ee s being obtained for aldehydes derived for a wide variety of substrates1 471. For example, hydroformylation of styrene gave a high yield of (R)-2-phenylpropanal (94% ee). The same catalyst system promoted the conversion of Z-but-2-ene into (5)-2-methylbutanal (82% ee). [Pg.37]

Even higher linearities are characteristic of modified rhodium catalysts. The effect is most pronounced when hydroformylation is carried out in molten triphe-nylphosphine,41 resulting in linearities as high as 9. The active catalytic species with two phosphine ligands (6) ensures the increased selectivity through steric effects. Platinum complexes with bidentate ligands exhibit the highest linearity to form linear aldehydes with 99% selectivity.27... [Pg.375]

The metal hydride mechanism was first described for the cobalt-carbonyl-catalyzed ester formation by analogy with hydroformylation.152 It was later adapted to carboxylation processes catalyzed by palladium136 153 154 and platinum complexes.137 As in the hydroformylation mechanism, the olefin inserts itself into the... [Pg.382]

Although homogeneously catalyzed reactions of platinum complexes are mostly concerned with hydrogenation, hydroformylation, isomerization and hydrosilylation reactions, the complexes trans-PtHX(PPh3)2 (X = C1, Br, I) have been used used as catalysts for the oxidative chlorination of n-pentane. H2PtCl6 and K2PtCl are used as oxidants.201... [Pg.371]

More successful attempts at asymmetric hydroformylation have involved rhodium and platinum complexes. As in asymmetric hydrogenation, best results have been obtained with optically active chelating diphosphines as ligands, but some studies of monophosphines have been made. Using... [Pg.265]

The majority of studies of asymmetric hydroformylation with rhodium and platinum complexes have made use of DIOP (49) as a ligand. With either the complex [RhCl(CO)(DIOP)] or [RhCl(C2H4)2]2 plus DIOP, styrene was hydroformylated to 2-phenylpropanal with optical yields of only 16%.366 When a-monodeuterostyrene was used as substrate, with DIOP and complex (34) as catalyst, essentially the same optical yield was obtained.367 The same catalyst with non-deuterated styrene under different conditions gave an optical yield of 25%.368... [Pg.266]

In spite of extensive studies on the asymmetric hydroformylation of olefins using chiral rhodium and platinum complexes as catalysts in early days, enantioselectivity had not exceeded 60% ee until the reaction of styrene catalyzed by PtCl2[DBP-DIOP (l)]/SnCl-> was reported to attain 95% ee in 1982 [8]. Although the value was corrected to 73% ee in 1983 [9], this result spurred further studies of the reaction in connection to possible commercial synthesis of antiinflammatory drugs such as (S)-ibuprofen and (S)-naproxen. The catalyst PtCl2[BPPM... [Pg.430]

Platinum complexes, [PtCl2 (l ,l )-XantBino ] (2) and its S,S analogue, were treated with tin(II) chloride to form the pre-catalyst for chemo-, regio-, and enantio-selective hydroformylation of styrene, vinyl acetate and allyl acetate. Although the reaction showed good chemo- and regio-selectivities, only moderate ee was obtained.103... [Pg.102]

After Breit and Seiche (67) had reported hydroformylation catalysts containing rhodium and bidentate ligands assembled via hydrogen bonding, Dubrovina and Boerner (68) pointed out that the first use of bidentate ligands obtained via hydrogen bonding in catalysis is represented by the supramolecular work on SPO platinum complexes. [Pg.94]

Scheme 4 shows a platinum catalyst 1 containing such a bis-SPO bidentate ligand anion, designed for the hydroformylation of ethylene and of 1-heptene, and various other, similarly built, platinum catalysts. Catalyst 1 has an activity comparable to that of the commercial cobalt catalysts that were used at the time and displays a higher selectivity for linear products than the cobalt-containing catalysts (66). Like the latter, the platinum complex exhibits hydrogenation activity to give, in part, alcohols in addition to aldehydes and also produces alkanes (an undesired reaction that implies a loss of feedstock). The catalysts are also active for isomerization, as are the cobalt complexes, and for internal heptene hydroformylation (Table 1), with formation of 60% linear products. [Pg.94]


See other pages where Platinum complexes hydroformylation is mentioned: [Pg.80]    [Pg.95]    [Pg.123]    [Pg.149]    [Pg.152]    [Pg.152]    [Pg.167]    [Pg.169]    [Pg.117]    [Pg.314]    [Pg.258]    [Pg.259]    [Pg.262]    [Pg.376]    [Pg.263]    [Pg.915]    [Pg.930]    [Pg.430]    [Pg.436]    [Pg.437]    [Pg.437]    [Pg.31]    [Pg.97]   
See also in sourсe #XX -- [ Pg.421 ]




SEARCH



1-Butene, 2,3-dimethylasymmetric hydroformylation catalysts, platinum complexes

Hydroformylation platinum

Hydroformylation platinum hydride complexes

Platinum complexes asymmetric hydroformylation

© 2024 chempedia.info