Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbon radical cations conjugation

Note hydrocarbon radical cations are conjugate acids of the hydrocarbyl radical.)... [Pg.859]

Allyl (27, 60, 119-125) and benzyl (26, 27, 60, 121, 125-133) radicals have been studied intensively. Other theoretical studies have concerned pentadienyl (60,124), triphenylmethyl-type radicals (27), odd polyenes and odd a,w-diphenylpolyenes (60), radicals of the benzyl and phenalenyl types (60), cyclohexadienyl and a-hydronaphthyl (134), radical ions of nonalternant hydrocarbons (11, 135), radical anions derived from nitroso- and nitrobenzene, benzonitrile, and four polycyanobenzenes (10), anilino and phenoxyl radicals (130), tetramethyl-p-phenylenediamine radical cation (56), tetracyanoquinodi-methane radical anion (62), perfluoro-2,l,3-benzoselenadiazole radical anion (136), 0-protonated neutral aromatic ketyl radicals (137), benzene cation (138), benzene anion (139-141), paracyclophane radical anion (141), sulfur-containing conjugated radicals (142), nitrogen-containing violenes (143), and p-semi-quinones (17, 144, 145). Some representative results are presented in Figure 12. [Pg.359]

We mentioned in Section III.A that one of the unique features of radical ion optical spectroscopy is that it allows one to measure excited-state energies of a molecule at two different geometries, namely that of the neutral species (If in PE spectra) and that of the relaxed radical cation (Xmax of the EA bands). In many cases this feature is of little relevance because either the geometry changes upon ionization are too small to lead to noticeable effects (e.g. in aromatic hydrocarbons), or because such effects are obscured, due to the invisibility of the states in one or other of the two experiments (i.e. strong cr-ionizations in the PE spectrum) or because of the near-cancellation of opposing effects (as in the case of linear conjugated polyene radical cations). [Pg.250]

Of course, a close stmctural relationship between radical cations and parent molecules is not likely to hold generally, but it is a fair approximation for alternant hydrocarbons. Deviations have been noted some stilbene radical cations have higher-lying excited states without precedent in the PE spectrum of the parent for radical cations of cross-conjugated systems (e.g., 1) already the first excited state is without such precedent. These states have been called non-Koop-manns states. Alkenes also feature major differences between parent and radical cation electronic structures. [Pg.215]

We will approach radical cation structures according to the nature of the parent molecules, specifically according to the donor type, viz., n-, or o-donors, to which they belong. Among the radical cations derived from rc-donors, those of aromatic hydrocarbons show the closest structural relationship to their parents. They also were the first class to be investigated in detail, because they are comparably stable and their spectra fall into a readily accessible range. This family shows the closest correlation between radical cation AEs, and parent AIs. On the other hand, cross-conjugated systems and alkenes may feature substantial differences between parent and radical cation electronic structures. Hence their tendency towards non-Koopmans type states. [Pg.190]

For radical cations this situation is typically observed when deprotonation of the dimer dication is slow and for radical anions under conditions that are free from electrophiles, for example, acids, that otherwise would react with the dimer dianion. Most often, this type of process has been observed for radical anions derived from aromatic hydrocarbons carrying a substituent that is strongly electron withdrawing, most notably and well documented for 9-substituted anthracenes [112,113] (see also Chapter 21). Examples from the radical cation chemistry include the dimerization of the 1,5-dithiacyclooctane radical cations [114] and of the radical cations derived from a number of conjugated polyenes [115,116]. [Pg.120]

If the transition considered is the HOMO LUMO transition of an alternant hydrocarbon, then first-order theory predicts that inductive perturbation will have no effect at all, because for = fo as a consequence of the pairing theorem. Small red shifts are in fact observed that can be attributed to hyper conjugation with the pseudo-7t MO of the saturated alkyl chain.290 On the other hand, alkyl substitution gives rise to large shifts in the absorption spectra of radical ions of alternant hydrocarbons whose charge distribution is equal to the square of the coefficients of the MO from which an electron was removed (radical cations) or to which an electron was added (radical anions), and these shifts are accurately predicted by HMO theory.291... [Pg.159]

Unpaired electrons can be present in ions as well as in the neutral systems that have been considered up to this point. There are many such radical cations and radical anions, and we consider some representative examples in this section. Various aromatic and conjugated polyunsaturated hydrocarbons undergo one-electron reduction by alkali metals. Benzene and naphthalene are examples. The ESR spectrum of the benzene radical anion was shown earlier in Figure 11.2a. These reductions must be carried out in aprotic solvents, and ethers are usually used for that purpose. The ease of formation of the radical anion increases as the number of fused rings increases. The electrochemical reduction potentials of some representative compounds are given in... [Pg.988]

Electronic Spectra of Radical Cations of Linear Conjugated Polyenes and Polycyclic Aromatic Hydrocarbons... [Pg.220]

The spirit is to show some of the results, but also to guide users of the approach by pointing to the problems and limitations of the method. The review covers some of the newer applications in the spectroscopy of organic molecules acetone, methylenecyclopropene, biphenyl, bithiophene, the protein chromophores indole and imidazole, and a series of radical cations of conjugated polyenes and polyaromatic hydrocarbons. The applications in transition metal chemistry include carbonyl, nitrosyl, and cyanide complexes, some dihalogens, and the chromium dimer. [Pg.220]

The through-space conjugation mode in 12.48 is called laticyclic. A number of systems have also been investigated here [66]. Definitive proof forthis type of overlap has been harder to come by. However, at least one class of bicyclic hydrocarbons has been shown to have large 7t—7i splittings [70] and more persuasively their radical cations have been shown to be delocalized by ESR spectrocopy [71]. [Pg.306]

Polymerization of isobutylene, in contrast, is the most characteristic example of all acid-catalyzed hydrocarbon polymerizations. Despite its hindered double bond, isobutylene is extremely reactive under any acidic conditions, which makes it an ideal monomer for cationic polymerization. While other alkenes usually can polymerize by several different propagation mechanisms (cationic, anionic, free radical, coordination), polyisobutylene can be prepared only via cationic polymerization. Acid-catalyzed polymerization of isobutylene is, therefore, the most thoroughly studied case. Other suitable monomers undergoing cationic polymerization are substituted styrene derivatives and conjugated dienes. Superacid-catalyzed alkane selfcondensation (see Section 5.1.2) and polymerization of strained cycloalkanes are also possible.118... [Pg.735]


See other pages where Hydrocarbon radical cations conjugation is mentioned: [Pg.105]    [Pg.331]    [Pg.229]    [Pg.45]    [Pg.36]    [Pg.49]    [Pg.162]    [Pg.35]    [Pg.157]    [Pg.153]    [Pg.32]    [Pg.41]    [Pg.52]    [Pg.2]    [Pg.354]    [Pg.229]    [Pg.36]    [Pg.49]    [Pg.36]    [Pg.49]    [Pg.274]    [Pg.267]    [Pg.205]    [Pg.663]    [Pg.462]    [Pg.128]    [Pg.1023]    [Pg.151]    [Pg.72]    [Pg.15]    [Pg.180]    [Pg.276]    [Pg.169]    [Pg.451]    [Pg.105]   
See also in sourсe #XX -- [ Pg.93 , Pg.94 , Pg.95 , Pg.96 ]




SEARCH



Conjugate radical

Conjugated hydrocarbons

Hydrocarbons, cation radicals

Radical cations conjugation

© 2024 chempedia.info