Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbon permeation

Surface fluorination changes the polymer surface drastically, the most commercially significant use of polymer surface direct fluorination is the creation of barriers against hydrocarbon permeation. The effectiveness of such barriers is enormous, with reductions in permeation rates of two orders of magnitude. Applications that exploit the enhanced barrier properties of surface-fluorinated polymers include (1) Polymer containers, e.g., gas tanks in cars and trucks, which are produced mostly from high-density polyethylene, where surface fluorination is used to decrease the permeation of fuel to the atmosphere and perfume bottles. (2) Polymeric membranes, to improve selectivity commercial production of surface-fluorinated membranes has already started.13... [Pg.230]

Krishna and Paschek [91] employed the Maxwell-Stefan description for mass transport of alkanes through silicalite membranes, but did not consider more complex (e.g., unsaturated or branched) hydrocarbons. Kapteijn et al. [92] and Bakker et al. [93] applied the Maxwell-Stefan model for hydrocarbon permeation through silicalite membranes. Flanders et al. [94] studied separation of C6 isomers by pervaporation through ZSM-5 membranes and found that separation was due to shape selectivity. [Pg.57]

General Considerations Physicochemical Regularities of Hydrocarbon Permeation in Membranes... [Pg.233]

GENERAL CONSIDERATIONS PHYSICOCHEMICAL REGULARITIES OF HYDROCARBON PERMEATION IN MEMBRANES BASED ON GLASSY AND RUBBERY POLYMERS... [Pg.234]

Permeability and diffusion coefficients of hydrocarbons in polyphenylene oxides are also essentially dependent on pressure (see Figure 9.23). It can be seen that in the case of ethylene, with the increase in pressure, the permeability coefficients first decrease, and then begin to rise. Ref. [18] quotes constants of the dual-mode sorption model for a number of hydrocarbons permeation through polyphenylene oxide. [Pg.255]

Liquid membrane technology has been applied to a great extent for separation of mixtures of saturated and aromatic hydrocarbons. Investigations reveal that the LSM process offers potential for dearomatization of petroleum streams like naphtha and kerosene to meet product specifications for naphtha cracker feedstock and aviation kerosene, respectively [25, 63, 85, 144-146]. The separation is based on a simple permeation technique and occurs due to the difference in solubility and diffusivity of permeating species through the membrane. Kato and Kawasaki [70] conducted studies on the enhancement of hydrocarbon permeation by the use of a polar additive like sulfolane or triethyl glycol. Sharma et al. [147] enhanced the selectivity of the membrane by several orders with the addition of a carrier. Chakraborty et al. [85] used cyclodextrins to enhance the separation factor and removal efficiency of aromatic compound. [Pg.185]

Kato, S. and Kawasaki, J. (1987). Enhancement of hydrocarbon permeation by polar additives in hquid emulsion membranes. J. Chem. Eng. Jpn., 20, 585-90. [Pg.193]

Permeation of the pipe wall is negligible for most products. However, aromatic hydrocarbon permeation rates should be reviewed... [Pg.57]

In the last few years, several hundred retail gasoline stations have installed small membrane systems to treat their tank vents. A flow scheme of this type of system is shown in Figure 21.9. Air from the gas station dispenser is collected and sent to the gasoline storage tank. When the pressure in the tank reaches a preset value, a pressure switch activates a small compressor that draws off excess vapor-laden air. A portion of the hydrocarbon vapors condense and is returned to the tank as a liquid. The remaining hydrocarbons permeate the membrane and are returned to the tank as concentrated... [Pg.570]


See other pages where Hydrocarbon permeation is mentioned: [Pg.79]    [Pg.297]    [Pg.282]    [Pg.158]    [Pg.839]    [Pg.20]    [Pg.116]    [Pg.303]    [Pg.358]    [Pg.256]    [Pg.790]    [Pg.316]   
See also in sourсe #XX -- [ Pg.230 ]

See also in sourсe #XX -- [ Pg.230 ]

See also in sourсe #XX -- [ Pg.230 ]




SEARCH



© 2024 chempedia.info