Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroboration double

Another possibility for asymmetric reduction is the use of chiral complex hydrides derived from LiAlH. and chiral alcohols, e.g. N-methylephedrine (I. Jacquet, 1974), or 1,4-bis(dimethylamino)butanediol (D. Seebach, 1974). But stereoselectivities are mostly below 50%. At the present time attempts to form chiral alcohols from ketones are less successful than the asymmetric reduction of C = C double bonds via hydroboration or hydrogenation with Wilkinson type catalysts (G. Zweifel, 1963 H.B. Kagan, 1978 see p. 102f.). [Pg.107]

The coupling of alkenylboranes with alkenyl halides is particularly useful for the stereoselective synthesis of conjugated dienes of the four possible double bond isomers[499]. The E and Z forms of vinylboron compounds can be prepared by hydroboration of alkynes and haloalkynes, and their reaction with ( ) or (Z)-vinyl iodides or bromides proceeds without isomerization, and the conjugated dienes of four possible isomeric forms can be prepared in high purity. [Pg.221]

Carbocation intermediates are not involved m hydroboration-oxidation Hydration of double bonds takes place without rearrangement even m alkenes as highly branched as the following... [Pg.251]

A second aspect of hydroboration-oxidation concerns its stereochemistry As illustrated for the case of 1 methylcyclopentene H and OH add to the same face of the double bond... [Pg.252]

We can consider the hydroboration step as though it involved borane (BH3) It sim phfies our mechanistic analysis and is at variance with reality only m matters of detail Borane is electrophilic it has a vacant 2p orbital and can accept a pair of electrons into that orbital The source of this electron pair is the rr bond of an alkene It is believed as shown m Figure 6 10 for the example of the hydroboration of 1 methylcyclopentene that the first step produces an unstable intermediate called a tt complex In this rr com plex boron and the two carbon atoms of the double bond are joined by a three center two electron bond by which we mean that three atoms share two electrons Three center two electron bonds are frequently encountered m boron chemistry The tt complex is formed by a transfer of electron density from the tt orbital of the alkene to the 2p orbital... [Pg.252]

Hydroboration-oxidation of alkenes (Section 6 11) H and OF add to the double bond with a regioselectivity opposite to that of Markovnikov s rule This is a very good synthetic method addition is syn and no rearrangements are observed... [Pg.626]

Hydroboration is the addition of a boron—hydrogenbond across a double or triple carbon—carbon bond to give an organoborane ... [Pg.308]

Tetrasubstituted and some hindered trisubstituted alkenes react rapidly only to the monoalkylborane stage. Rarely, when the tetrasubstituted double bond is incorporated in a cycHc stmcture, does hydroboration under normal conditions fail (25—27). However, such double bonds may react under conditions of greater force (25,28—31). Generally, trialkylboranes are stable at normal temperatures, undergoing thermal dissociation at temperatures above 100°C (32—34). In the presence of B—H bonds, trialkylboranes undergo a redistribution reaction (35—38). [Pg.308]

Dibromoborane—dimethyl sulfide is a more convenient reagent. It reacts directly with alkenes and alkynes to give the corresponding alkyl- and alkenyldibromoboranes (120—123). Dibromoborane differentiates between alkenes and alkynes hydroborating internal alkynes preferentially to terminal double and triple bonds (123). Unlike other substituted boranes it is more reactive toward 1,1-disubstituted than monosubstituted alkenes (124). [Pg.311]

Among chiral dialkylboranes, diisopinocampheylborane (8) is the most important and best-studied asymmetric hydroborating agent. It is obtained in both enantiomeric forms from naturally occurring a-pinene. Several procedures for its synthesis have been developed (151—153). The most convenient one, providing product of essentially 100% ee, involves the hydroboration of a-pinene with borane—dimethyl sulfide in tetrahydrofuran (154). Other chiral dialkylboranes derived from terpenes, eg, 2- and 3-carene (155), limonene (156), and longifolene (157,158), can also be prepared by controlled hydroboration. A more tedious approach to chiral dialkylboranes is based on the resolution of racemates. /n j -2,5-Dimethylborolane, which shows excellent enantioselectivity in the hydroboration of all principal classes of prochiral alkenes except 1,1-disubstituted terminal double bonds, has been... [Pg.311]

Many other examples ia the Hterature illustrate the possibiUties of chemoselective hydroborations (124,186—189). For example, selectivity between double and triple bonds has been shown (124). [Pg.312]

The properties of these new materials are being studied. Hydroboration is also appHed for the conversion of double bonds in polymers into hydroxyl groups (450—454). Well-defined copolymers of ethylene—vinyl alcohol can be prepared (455). [Pg.321]

Unsymmetrical functional tetraorganotins are generally prepared by tin hydride addition (hydrostaimation) to functional unsaturated organic compounds (88) (see Hydroboration). The realization that organotin hydrides readily add to atiphatic carbon—carbon double and triple bonds forming tin—carbon bonds led to a synthetic method which does not rely on reactive organometatiic reagents for tin—carbon bond formation and, thus, allows the synthesis of... [Pg.68]

If R and R are different, the two faces of the double bond become nonequivalent, permitting stereoselective reactions at the double bond. These effects have been explored, for example, using 4-silyl-2-pentenes. Reactions such as epoxidation and hydroboration proceed by preferential addition fiom the face opposite the bulky silyl substituents. [Pg.144]

The hydroboration step, being very sensitive to steric effects, yields only secondary alkylboranes from trisubstituted double bonds, whereas the less hindered alkylborane is formed predominantly from disubstituted steroidal double bonds. The diborane attack occurs usually towards the a-side and hence results in overall a-hydration of double bonds after alkaline hydrogen peroxide oxidation. ... [Pg.192]

The successful labeling of the elusive 14a-position in cholestane represents a very important application of this reaction.It is known that hydroboration of the double bond in 5of-cholest-14-ene (174) occurs on the a-side. Consequently, by using deuteriodiborane (generated by the reaction of boron trifluoride etherate with lithium aluminum deuteride) and then propionic acid for hydrolysis of the alkylborane intermediate, 14a-d,-5a-cholestane (175) is obtained in 90% isotopic purity. This method also provides a facile route to the C-15 labeled analog (176) when the alkylborane derived from 5a-cholest-14-ene is hydrolyzed with propionic acid-OD. ... [Pg.192]

Borane 2 adds to carbon-carbon double bonds without the need of catalytic activation. This reaction has been discovered and thoroughly investigated by H. C. Browm, and is called hydroboration It permits a regioselective and stereospecific conversion of alkenes to a variety of functionalized products. [Pg.169]

A mixture of d- and l- hexoses also results from the hydroboration of these 5-enes. Hydroboration results in anti-Markownikoff, cw-hydration of the double bond and the amount of each hexose formed varies according to the nature of the substituent groups. For example, hydroboration (23) of methyl 6-deoxy-a-D-ryZo-hex-5-enopyranose (3) affords methyl a-D-glucopyranoside and methyl / -L-idopyranoside in the ratio of 1 2.5 respectively whereas hydroboration of the fris-trimethylsilyl ether of 3 afforded them in the ratio 1 0.6 respectively. The hydroboration method can be used to achieve specific labelling of hexoses with tritium methyl-/ -L-idopyranoside[5-H3] and methyl a-D-glucopyranoside [5-H3] were thus prepared (23). Similarly, hydroboration of the D-Zt/ro-hex-5-eno derivative (14) with diborane-H3 followed by removal of the isopropyli-dene group, afforded methyl a-D-mannopyranoside [5-H3] and methyl / -L-gulopyranoside [5-H3] in the ratio of 1 2 respectively (23). [Pg.131]

One of the features that makes the hydrobora ( ion reaction so useful is the regiochemistry that results when an unsymmetrical alkene is hydroborated. For example, hydroboration/oxidation of 1-methylcyclopentene yields trans-2-methylcydopentanol. Boron and hydrogen both add to the alkene from the same face of the double bond—that is, with syn stereochemistry, the opposite of anti—with boron attaching to the less highly substituted carbon. During the oxidation step, the boron is replaced by an -OH with the same stereochemistry, resulting in an overall syn non-Markovnikov addition of water. This stereochemical result is particularly useful because it is complementary to the Markovnikov regiochemistry observed for oxymercuration. [Pg.224]

Methyl-2-hexcne has a disubstituted double bond, RCH=CHR, and would probably give a mixture of two alcohols with either hydration method since Markovnikov s rule does not apply to symmetrically substituted alkenes. 3-MethyI-3-hexene, however, has a trisubstituted double bond, and would give only the desired product on non-Markovnikov hydration using the hydroboration/oxidation method. [Pg.226]


See other pages where Hydroboration double is mentioned: [Pg.64]    [Pg.35]    [Pg.64]    [Pg.35]    [Pg.208]    [Pg.105]    [Pg.126]    [Pg.130]    [Pg.200]    [Pg.224]    [Pg.310]    [Pg.311]    [Pg.311]    [Pg.311]    [Pg.312]    [Pg.312]    [Pg.313]    [Pg.313]    [Pg.314]    [Pg.314]    [Pg.321]    [Pg.364]    [Pg.90]    [Pg.165]    [Pg.287]    [Pg.545]    [Pg.105]    [Pg.224]    [Pg.225]    [Pg.226]   
See also in sourсe #XX -- [ Pg.4 , Pg.4 , Pg.5 , Pg.5 , Pg.7 ]




SEARCH



© 2024 chempedia.info