Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydration, differential,

The ability of living organisms to differentiate between the chemically similar sodium and potassium ions must depend upon some difference between these two ions in aqueous solution. Essentially, this difference is one of size of the hydrated ions, which in turn means a difference in the force of electrostatic (coulombic) attraction between the hydrated cation and a negatively-charged site in the cell membrane thus a site may be able to accept the smaller ion Na (aq) and reject the larger K (aq). This same mechanism of selectivity operates in other ion-selection processes, notably in ion-exchange resins. [Pg.124]

The mineralogical, structural, physical, and thermodynamic properties of the various crystalline alumiaa hydrates are Hsted ia Tables 1, 2, and 3, respectively. X-ray diffraction methods are commonly used to differentiate between materials. Density, refractive iadex, tga, and dta measurements may also be used. [Pg.167]

Fig. 2. Direct hydration process for the manufacture of isopropyl alcohol. The steps within the dashed box differentiate the direct from the indirect... Fig. 2. Direct hydration process for the manufacture of isopropyl alcohol. The steps within the dashed box differentiate the direct from the indirect...
The hydrated alumina minerals usually occur in ooUtic stmctures (small spherical to eUipsoidal bodies the size of BB shot, about 2 mm in diameter) and also in larger and smaller stmctures. They impart harshness and resist fusion or fuse with difficulty in sodium carbonate, and may be suspected if the raw clay analyzes at more than 40% AI2O2. Optical properties are radically different from those of common clay minerals, and x-ray diffraction patterns and differential thermal analysis curves are distinctive. [Pg.200]

In given work the possibilities enumerated above of varieties of thermal analysis used to reseai ch of solid solutions of hydrated diphosphates with diverse composition. So, for example, the results of differential-thermal analysis Zn Co j P O -SH O showed, that it steady in the time of heating on air to 333 K. A further rise of temperature in interval 333 - 725 K is accompanied with the masses loss, which takes place in two basic stages, registered on crooked TG by two clear degrees, attendant to removal 4,0 and 1,0 mole H O. On crooked DTA these stages dehydration registers by two endothermic effects. In interval 603 - 725 K on crooked DTA is observed an exothermal effect. [Pg.91]

When the terpene a-fenchene (isopinene) is hydrated by means of acetic and sulphuric acids, it yields an isomer of fenchyl alcohol, which is known as isofenchyl alcohol (q.v.), and which on oxidation yields iso-fenchone, as fenchyl alcohol yields fenchone. The two ketones, fenchone and isofenchone, are sharply differentiated by isofenchone yielding iso-fenchocamphoric acid, Cj Hj O, on oxidation with potassium permanganate, which is not the case with fenchone. According to Aschan,i the hydrocarbon found in turpentine oil, and known as /9-pinolene (or cyclo-fenchene—as he now proposes to name it), when hydrated in the usual manner, yields both fenchyl and isofenchyl alcohols, which on oxidation yield the ketones fenchone and isofenchone. According to Aschan the relationships of these bodies are expressed by the following formulae —... [Pg.234]

Synthetic ethyl alcohol (known as ethanol to differentiate it from fermentation alcohol) was originally produced hy the indirect hydration of ethylene in the presence of concentrated sulfuric acid. The formed mono-and diethyl sulfates are hydrolyzed with water to ethanol and sulfuric acid, which is regenerated ... [Pg.205]

The experiments were conducted at four different temperatures for each gas. At each temperature experiments were performed at different pressures. A total of 14 and 11 experiments were performed for methane and ethane respectively. Based on crystallization theory, and the two film theory for gas-liquid mass transfer Englezos et al. (1987) formulated five differential equations to describe the kinetics of hydrate formation in the vessel and the associate mass transfer rates. The governing ODEs are given next. [Pg.314]

HN Joshi, EM Topp. Hydration in hyaluronic acid and its esters using differential scanning calorimetry. Int J Pharm 80(2-3) 213-225, 1992. [Pg.621]

Hydration of phospholipid head groups is essential properties not only for stabilizing bilayer structures in an aqueous environment, but also for fusion or endocytosis of biological membranes including protein transfers [33-35]. Hydration or swelling behavior has only been studied by indirect methods such as X-ray diffraction [36], differential scanning calorimetry (DSC) [37], and H-NMR [38,39]. [Pg.134]

Apart from the qualitative observations made previously about suitable solvents for study, the subject of solvates has two important bearings on the topics of thermochemistry which form the main body of this review. The first is that measured solubilities relate to the appropriate hydrate in equilibrium with the saturated solution, rather than to the anhydrous halide. Obviously, therefore, any estimate of enthalpy of solution from temperature dependence of solubility will refer to the appropriate solvate. The second area of relevance is to halide-solvent bonding strengths. These may be gauged to some extent from differential thermal analysis (DTA), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) solvates of "aprotic solvents such as pyridine, tetrahydrofuran, and acetonitrile will give clearer pictures here than solvates of "protic solvents such as water or alcohols. [Pg.77]

The employment of NMR-active isotopes permits to access experimental parameters which are intrinsically difficult to measure, unless a significant concentration of the sugar is present in the NMR tube. For instance, aqueous solutions of N-acetyIncuraminic acid, labeled with 13C at Cl, C2, and/or C3, were analyzed to detect and quantify the various chemical species present in equilibrium at different pHs. In fact, in addition to the expected a and (3 pyranose forms, acyclic keto, keto hydrate and enol forms were identified on the basis of 13C NMR spectroscopic data. Besides, DFT methods were employed to predict the effect of enol and hydrate structure on the coupling constant values Jc,u and /c c involving C2 and C3, finding that 2/c2,h3 can be safely used to differentiate the cis and tram isomers of the enol forms.9... [Pg.334]


See other pages where Hydration, differential, is mentioned: [Pg.87]    [Pg.133]    [Pg.87]    [Pg.133]    [Pg.119]    [Pg.166]    [Pg.337]    [Pg.547]    [Pg.350]    [Pg.419]    [Pg.276]    [Pg.632]    [Pg.202]    [Pg.1183]    [Pg.1183]    [Pg.23]    [Pg.222]    [Pg.134]    [Pg.349]    [Pg.366]    [Pg.225]    [Pg.420]    [Pg.230]    [Pg.193]    [Pg.719]    [Pg.316]    [Pg.432]    [Pg.438]    [Pg.599]    [Pg.296]    [Pg.91]    [Pg.477]    [Pg.203]    [Pg.224]    [Pg.10]    [Pg.125]    [Pg.136]    [Pg.43]    [Pg.37]    [Pg.17]   


SEARCH



© 2024 chempedia.info